
Tensaurus: A Versatile Accelerator for
Mixed Sparse-Dense Tensor Computations

Nitish Srivastava1*, Hanchen Jin1, Shaden Smith2, Hongbo Rong3,
David Albonesi1*, Zhiru Zhang1*

1Cornell University
2Microsoft AI & Research

3Intel Parallel Computing Lab
*{nks45, dha7, zhiruz}@cornell.edu

ABSTRACT
Tensor factorizations are powerful tools in many machine
learning and data analytics applications. Tensors are often
sparse, which makes sparse tensor factorizations memory
bound. In this work, we propose a hardware accelerator
that can accelerate both dense and sparse tensor factor-
izations. We co-design the hardware and a sparse storage
format, which allows accessing the sparse data in vectorized
and streaming fashion and maximizes the utilization of
the memory bandwidth. We extract a common computa-
tion pattern that is found in numerous matrix and tensor
operations and implement it in the hardware. By design-
ing the hardware based on this common compute pattern,
we can not only accelerate tensor factorizations but also
mixed sparse-dense matrix operations. We show significant
speedup and energy benefit over the state-of-the-art CPU
and GPU implementations of tensor factorizations and over
CPU, GPU and accelerators for matrix operations.

1. INTRODUCTION
Tensor algebra lives at the heart of machine learning

(ML). Classical ML techniques such as embedding gener-
ation in recommender systems, dimensionality reduction,
latent Dirichlet allocation, compression on neural networks
and detecting cliques in social networks make use of tensor
factorizations [1–4]. Tensor factorizations have traditionally
been used in recommender systems [5,6] to produce factor
matrices that represent an embedding into the reduced
latent space. While deep neural networks are expensive to
train, require a large number of labeled data and have lim-
ited interpretability, tensor factorizations provide a faster,
more interpretable, yet competitive method for producing
embedding for recommender systems [7]. Recently, ten-
sor factorizations have also achieved promising results in
compressing deep neural networks [8–10].
There are two popular methods for tensor factoriza-

tions [11]: canonical polyadic decomposition (CPD) and
Tucker decomposition. CPD approximates the tensor as a
sum of rank-one tensors, whereas Tucker approximates it
by a core tensor (weights) and factor matrices (principal
components) along each mode [11]. The two most expensive
computation kernels for these factorizations are matricized

tensor times Khatri Rao product (MTTKRP) and tensor
times matrix chain (TTMc).
Traditionally, tensor factorizations have been done on

CPUs and GPUs, both of which have low energy efficiency
as they allocate excessive hardware resources to flexibly
support various workloads [12–14]. Hardware specialization
has become a common means to improve the compute
efficiency. However, there are two key challenges with de-
signing an accelerator for tensor factorizations. First, many
of the real-world tensors such as Netflix movie ratings [15]
and never-ending language learning (NELL) [16] are sparse,
which makes tensor factorizations memory bound. Sec-
ond, the compute and memory access patterns of different
tensor factorizations can be very different, which makes
it necessary to reduce these computations into some basic
operations and implement them in the hardware.

In this work, we propose Tensaurus, a new hardware ac-
celerator for highly efficient processing of mixed sparse and
dense tensor computations. Tensaurus accelerates a compu-
tation pattern that we observe in common across different
tensor factorization kernels as well as several widely used
matrix operations. Our accelerator further exploits a new
sparse storage format that we introduce to allow accessing
of sparse data in a vectorized and streaming manner to
achieve high memory bandwidth utilization. Thus, with the
co-design of the accelerator architecture and sparse storage,
Tensaurus is both versatile and adaptable. It is versatile in
the sense that it can accelerate both tensor factorizations
and common matrix operations such as matrix-matrix and
matrix-vector multiplications, which are key compute prim-
itives in many ML applications. It can also easily adapt to
different levels of sparsity found in these computations.
To the best of our knowledge, no prior work has pro-

posed a hardware accelerator for sparse tensor factorizations
and previous efforts have been focusing on dense tensor
factorizations (e.g., T2S-Tensor [17] and [18]).
The key technical contributions of this paper are:

1. We are the first to propose a hardware accelerator
that is capable of accelerating not only sparse tensor fac-
torizations, but also dense tensor factorizations and other
common mixed sparse-dense (sparse-dense and dense-dense)
matrix operations for a wide range of sparsity.

2. We introduce a new sparse storage format, com-
pressed interleaved sparse slice (CISS), which allows ac-
cessing sparse data in a vectorized and streaming manner
and thus achieves high memory bandwidth utilization and
performance for sparse tensor kernels.

3. We achieve significant speedup and energy reduc-
tion for tensor factorizations over the state-of-the-art CPU
and GPU implementations. We also compare our acceler-
ator against CPU, GPU, and the state-of-the-art hardware
accelerator for sparse CNNs and demonstrate higher per-
formance and energy efficiency.

2. BACKGROUND

2.1 Tensor Notations
A tensor is a generalization of a matrix to multiple di-

mensions. A scalar is a tensor of dimension zero, a vector is
a tensor of dimension one and a matrix is a tensor of dimen-
sion two. We denote tensors with three or more dimensions
using capital calligraphic letters (e.g., A), matrices using
boldface capital letters (e.g., A), vectors using boldface
letters (e.g., a), and scalars using Greek letters (e.g. α).

The dimensions of a tensor are also called its modes and
colon(:) is used to indicate all the elements of a mode.
Thus a 3-dimensional (3-d) tensor is a tensor with 3 modes.
Fig. 3a shows an example of a 4×2×2 3-d tensor where
i, j and k are the mode 0, mode 1 and mode 2 indices of
the data elements. Fibers are building blocks of tensors. A
fiber is the result of holding all but one index constant. For
a 3-d tensorA, its fibers areA(:,j,k),A(i,:,k), andA(i,j,:).
Similarly, for a matrixA its rowsA(i,:) and columnsA(:,j)
are its fibers. A slice of a tensor is the resultant matrix by
holding all but two indices constant. Slices of a 3-d tensor
A would be A(i,:,:), A(:,j,:) and A(:,:,k).

2.2 MTTKRP
MTTKRP is the key computation kernel in the alternat-

ing least square (ALS) method, which is the most popular
method for finding the factor matrices in CPD [1,11]. The
computation for MTTKRP consists of multiplication of a
tensor with N−1 factor matrices, where N is the mode of
the tensor, to produce an output matrix. Eq. (1) and Fig. 1
show the MTTKRP kernel for a 3-d tensor along mode 0 (i),
where · denotes multiplication. Since MTTKRP is used for
both sparse and dense tensor factorizations [19], we refer to
MTTKRP on sparse tensors as SpMTTKRP and on dense
tensors as DMTTKRP. The operand matrices and the
output matrix in both SpMTTKRP and DMTTKRP are
dense. Even with very efficient data structures [20,21], the
arithmetic intensity of SpMTTKRP remains low, making
this kernel memory bound [22].
The Hadamard product, denoted by ◦, is the element-

wise multiplication of two matrices with the same size. It
is distributive and can be used to factor out the operand
matrices in MTTKRP [20] as shown in Eq. (2). Here the
Hadamard product operates on two vectors instead of two
matrices. Such factorization reduces the number of multipli-
cations in DMTTKRP from 2·I ·J ·K ·F to I ·J ·F ·(K+1).
Here I, J and K are the sizes of the three dimensions of
the tensor and F is the desired rank for tensor factorization

(normally in the order of 10s or 100s). Similar reductions
are observed in the case of SpMTTKRP [20]. Eq. (2) can
be easily generalized to MTTKRP on tensors with more
than three dimensions as shown in Eq. (3).

Y(i,f)=

J−1∑
j=0

K−1∑
k=0

A(i,j,k)·B(j,f)·C(k,f) (1)

I

J

K

J

F

B

K

C

F

𝑨

Figure 1: MTTKRP

Y(i,:)=
J−1∑
j=0

B(j,:)◦
(K−1∑

k=0

A(i,j,k)·C(k,:)

)
(2)

Y(i1,:)=
∑
i2

M2(i2,:)◦...◦
∑
in

A(i1,...,in)·Mn(in,:) (3)

2.3 TTMc
TTMc is the key computation kernel in higher-order or-

thogonal iterations (HOOI) [23], which is the most popular
method for finding the core tensor and factor matrices in
Tucker decomposition [1,11]. TTMc involves a sequence
of tensor times matrix operations, which compresses the
tensor. The output of TTMc is another tensor compressed
for all but one mode. Eq. (4) shows the TTMc kernel for a
3-d tensor along mode 0 (i). Similar to MTTKRP, TTMc
is used for both dense and sparse tensors [24–26]. For now,
we refer to TTMc on sparse tensors as SpTTMc and on
dense tensors as DTTMc. For both SpTTMc and DTTMc,
the operand matrices and output tensor are dense.

The Kronecker product, denoted by ⊗, is the generaliza-
tion of vector outer product to matrices and tensors. It is
also distributive and can be used to factor out the operand
matrices in TTMc as shown in Eq. (5). Such factorization
reduces the number of multiplications in DTTMc from
2·I ·J ·K ·F1 ·F2 to I ·J ·(KF2+F1F2) and similar reduc-
tions are observed in the case of SpTTMc [27]. Here F1

and F2 are the desired ranks for tensor factorization and
are on the order of 10s or 100s. Eq. (5) can also be easily
generalized to tensors with more than three dimensions as
shown in Eq. (6).

Y(i,f1,f2)=

J−1∑
j=0

K−1∑
k=0

A(i,j,k)·B(j,f1)·C(k,f2) (4)

Y(i,:,:)=

J−1∑
j=0

B(j,:)⊗
(K−1∑

k=0

A(i,j,k)·C(k,:)

)
(5)

Y(i1,:,...,:)=
∑
i2

M2(i2,:)⊗...⊗
∑
in

A(i1,...,in)·Mn(in,:)

(6)

∀𝑖 𝑌 𝑖, : =

𝑗 ∊{𝑗:∃ 𝑘

𝑠𝑡. 𝐴(𝑖,𝑗,𝑘)≠0}

𝐵(𝑗, :)

𝑘 ∊ {𝑘:𝐴 𝑖,𝑗,𝑘 ≠0}

𝐴 𝑖, 𝑗, 𝑘 ⋅ 𝐶(𝑘, :)

𝑘 ∊ {𝑘:𝐴 𝑖,𝑗,𝑘 ≠0}

◦

∀𝑖 𝑌 𝑖, : , : =

𝑗 ∊{𝑗:∃ 𝑘

𝑠𝑡. 𝐴(𝑖,𝑗,𝑘)≠0}

𝐵(𝑗, :)

𝑘 ∊ {𝑘:𝐴 𝑖,𝑗,𝑘 ≠0}

𝐴 𝑖, 𝑗, 𝑘 ⋅ 𝐶(𝑘, :)

𝑘 ∊ {𝑘:𝐴 𝑖,𝑗,𝑘 ≠0}
⋅

𝑗 ∊{𝑗:∃ 𝑘 𝑠𝑡. 𝐴(𝑖,𝑗,𝑘)≠0}

∀𝑖 𝑌 𝑖, : =

𝑗 ∊ {𝑗:𝐴 𝑖,𝑗 ≠0}

𝐴 𝑖, 𝑗 ⋅ 𝐵(𝑗, :)

𝑗 ∊ {𝑗:𝐴 𝑖,𝑗 ≠0}

𝑗 ∊ {𝑗:𝐴 𝑖,𝑗 ≠0}

𝐴 𝑖, 𝑗 ⋅ 𝑏(𝑗)

𝑗 ∊ {𝑗:𝐴 𝑖,𝑗 ≠0}

◦

⊗

⊗

①

②

𝑗 ∊{𝑗:∃ 𝑘 𝑠𝑡. 𝐴(𝑖,𝑗,𝑘)≠0}

(c) SpMM

(d) SpMV(a) SpMTTKRP (b) SpTTMc

①
①

②

①

∀𝑖 𝑦 𝑖 =

⋅⋅

⋅

⋅ ⋅ ⋅

⋅

Figure 2: SpMTTKRP, SpTTMc, SpMM, and SpMV expressed using the SF3 compute pattern in Eq. (9).

2.4 Matrix-Matrix Multiplication
Matrix-matrix multiplication involves multiplication of

two matrices to produce an output matrix as shown in
Eq. (7). Matrix-matrix multiplication involving two dense
matrices is known as GEMM, and a sparse matrix and a
dense matrix is known as SpMM. GEMM and SpMM are
building blocks of many algorithms such as graph learn-
ing [28,29] and CNNs [30].

Y(i,:)=

J−1∑
j=0

A(i,j)·B(j,:) (7)

2.5 Matrix-Vector Multiplication
Matrix-vector multiplication involves multiplication of a

matrix with a vector to produce an output vector as shown
in Eq. (8). Matrix-vector multiplication involving a dense
matrix and a dense vector is known as GEMV, and a sparse
matrix and a dense vector is known as SpMV. GEMV and
SpMV are used in applications such as PageRank [31],
RNNs, minimal spanning tree, single-source shortest path
and ML algorithms such as support vector machine [32]
and text analytics [33].

y(i)=

J−1∑
j=0

A(i,j)·b(j) (8)

3. COMPUTE PATTERN
We observe that a common compute pattern can be ex-

tracted across all the aforementioned kernels, namely, MT-
TKRP, TTMc, matrix-matrix multiplication, and matrix-
vector multiplication. We name this compute pattern as
scalar-fiber product followed by fiber-fiber products (SF3)
and it is expressed in the following form:

fibersout =
∑
D1

fiber1 op
∑
D0

(
scalar · fiber0

)
(9)

Here, fibersout represent one or more output fibers of
a tensor, fibers0 and fibers1 represent a single fiber from
two tensors, scalar represents a scalar value from a tensor,
op is either a Hadamard product of two vectors (◦) or a
Kronecker product of two vectors (⊗), and D1 and D0 are
domains over which the two summations are performed.
Table 1 shows how different tensor computations map

to SF3 compute pattern. For DMTTKRP, fibersout is a

row from Y matrix, fiber1 is a row from B matrix, op is
◦, scalar is data value from A tensor and fiber0 is a row
fromCmatrix. For DTTMc, all the notations are the same
as DMTTKRP, except fibersout are more than one fiber
(one slice F1×F2) from Y tensor and op is ⊗. For GEMM,
the scalar is data from A matrix, fiber0 is a row from B
matrix, fibersout is a row fromYmatrix and op and fiber1
are not applicable (NA). GEMV is same as GEMM except
fibersout and fibers0 consist of only one element. Since
all these computations are dense, the domains D0 and D1

for each of these computations are also continuous ranges.
Table 1 and Fig. 2 also show how SpMTTKRP, SpTTMc,

SpMM, and SpMV map to SF3 compute pattern. Here the
mapping of each sparse kernel to Eq. (9) is the same as
that of their dense counterparts except for the domains D0

and D1, which are non-continuous ranges and determined
by the position of non-zero entries in the sparse tensor.
Although shown for 3-d tensors, Eq. (9) can be easily ex-
tended to support tensor computations involving tensors
with more than three dimensions.

The formulation in Eq. (9) exhibits coarse-grained par-
allelism, where different output fibers can be computed in
parallel and fine-grained single instruction multiple data
(SIMD) parallelism where the computation of a single fiber
can be performed in a vectorized manner.

4. SPARSE FORMATS
Sparse tensor computations require a sparse storage for-

mat that is efficient for both load balancing and parallel
data accesses in order to accelerate them on spatial hard-
ware. The existing sparse storage formats such as com-
pressed sparse row (CSR) [34], compressed sparse fiber
(CSF) [20], co-ordinate (COO) and their variants [35,36]
allocate data needed by different processing elements (PEs)
at far away locations in memory, resulting in low memory
bandwidth utilization.

Figs. 3a and 3b show a sparse tensor and how it is stored
in an extended CSR format. In this format, all the non-zero
entries in the tensor are stored contiguously in the memory
along with their mode 1 and mode 2 indices j and k. An
array of slice pointers whose length is equal to the number
of slices in the tensor (4 in this example) stores the pointers
to the beginning of each slice in the array of non-zero entries.
Fig. 3c depicts cycle-by-cycle execution of two PEs, each of

Table 1: Mapping of DMTTKRP, SpMTTKRP, DTTMc, SpTTMc, GEMM, SpMM, GEMV, and SpMV kernels to the
SF3 compute pattern in Eq. (9). Here NA means not applicable.

fibersout fiber1 D1 op scalar fiber0 D0

DMTTKRP Y(i,:) B(j,:) [0,J) ◦ A(i,j,k) C(k,:) [0,K)

SpMTTKRP Y(i,:) B(j,:) {j | ∃k st.A(i,j,k) 6=0} ◦ A(i,j,k) C(k,:) {k |A(i,j,k) 6=0}

DTTMc Y(i,:,:) B(j,:) [0,J) ⊗ A(i,j,k) C(k,:) [0,K)

SpTTMc Y(i,:,:) B(j,:) {j | ∃k st.A(i,j,k) 6=0} ⊗ A(i,j,k) C(k,:) {k |A(i,j,k) 6=0}

GEMM Y(i,:) NA NA NA A(i,j) B(j,:) [0,J)

SpMM Y(i,:) NA NA NA A(i,j) B(j,:) {j |A(i,j) 6=0}

GEMV y(i) NA NA NA A(i,j) b(j) [0,J)

SpMV y(i) NA NA NA A(i,j) b(j) {j |A(i,j) 6=0}

which reads a different slice of the tensor from the memory
in a streaming fashion. As it can be seen in each cycle
the two PEs read the data from non-contiguous memory
locations.
The compressed interleaved sparse row (CISR) format

proposed by Fowers et al. [37] tackles this issue by storing
the sparse data accessed by different PEs at the same time in
contiguous memory locations; however, this format requires
centralized row decoding, lock-step execution, and applies
only to matrices. Partly inspired by CISR, we propose a
new sparse storage format called compressed interleaved
sparse slice (CISS). With this new format, we overcome
the limitations of CISR and extend it to tensors with more
than two dimensions. Fig. 3d shows the tensor in Fig. 3a
stored in the CISS format, which consists of an array of
CISS entries. Each entry is (dw+2·iw)·P bits long, where
dw (data width) and iw (index width) are the bitwidths of
the non-zero elements and their mode indices, respectively
and P is the number of PEs in hardware. For each PE,
a CISS entry consists of three fields: nnz (non-zero data
value), i/j (mode 0 or mode 1 index) and k (mode 2 index).
Since nnz is supposed to carry only non-zero data values, a
0 in nnz indicates that the i/j field consists of i value and
a non-zero in nnz indicates that i/j consists of a j value.
To store a sparse tensor in CISS format, first each PE

is assigned a slice of the tensor corresponding to its ID.
For example, in Fig. 3d PE0 is assigned slice 0 and PE1
is assigned slice 1 in the first cycle. The slice indices for
each PE are written to the i/j and the nnz is set to 0. In
the next few cycles, the CISS entries for a PE are filled
with the non-zero entries from the slice by assigning the
non-zero data elements to nnz, mode 1 indices to i/j and
mode 2 indices to k. When all the non-zero elements in the
slice assigned to a PE are scheduled, the next available slice
is assigned to that PE and its slice index and data values
are inserted into the array of CISS entries. For example,
in Fig. 3d when all the non-zero entries from the slice i=1
are inserted into the array, the next available slice is slice
i=2 and hence it gets assigned to PE1.

Since CISS assigns the non-zeros accessed from different
PEs at the same time in contiguous memory locations, it
achieves high spatial locality and memory bandwidth uti-
lization. CISS format also schedules the next available slice
of the tensor to the PE with the least data that ensures a
load balanced schedule where each PE is assigned a similar
number of non-zero entries. Although described for 3-d

tensors, the CISS format can be easily generalized to 2-d
matrices and tensors with more than three dimensions.

Fig. 3e also shows the achieved bandwidth when multiple
PEs stream a 3-d tensor stored in extended CSR and CISS
formats from the off-chip memory with a peak bandwidth
of 16 GB/s. As it can be seen, the achieved bandwidth for
extended CSR saturates at 1.9 GB/s for 8 PEs while CISS
achieves a bandwidth of 11.2 GB/s, very close to the peak
bandwidth.

5. TENSAURUS ARCHITECTURE
In this section, using SpMTTKRP as a driving example,

we explain the implementation of the SF3 compute pattern
described in Section 3.
Fig. 4 shows the execution of SpMTTKRP kernel using

the same tensor as in Fig. 3a on two PEs. The slices i=0
and i=3 are assigned to PE0 and slices i=1 and i=2 are
assigned to PE1 (same as in Fig. 3). Each PE reads a non-
zero data element aijk from the sparse tensorA, the kth row
from matrix C (ck:) and performs a scalar-vector multipli-
cation to produce tkij: All the partial results t

k
ij: for different

values of k are accumulated together and then multiplied by
the jth row of matrix B (bj:) to produce the partial results

yj
i:. All the y

j
i: vectors are then summed together for differ-

ent values of j to produce the ith row of the output matrixY.
From this example, it can be seen that the core operations in
the SpMTTKRP are scalar-vector multiplication (aijk ·ck:),
element-wise vector-vector multiplication (tkij: ◦bj:) and

element-wise vector-vector addition (tkij:+tk
′

ij: and yj
i:+yj′

i:).
There are also two types of intermediate results produced
in the SpMTTKRP computation: tkij: and yj

i:.

For the SF3 compute pattern in Eq. (9), the scalar-vector
multiplications arise from scalar · fiber0; the element-
wise vector-vector multiplication (VVMUL) operations
arises from op; and the element-wise vector-vector addition
(VVADD) arises from the two summations over D0 and D1.
The intermediate results in Eq. (9) correspond to the par-
tial results of the computations scalar·fiber0 and fiber1
op
∑

D0
scalar·fiber0. Thus, using the three major oper-

ations: scalar-vector multiplication, VVMUL and VVADD
and two sets of storage registers for the two kinds of partial
results, we can design the micro-architecture of a PE in
Tensaurus. For scalability, we can further split a single
vector operation into multiple small vector operations, each
of vector length VLEN.

a000

a011

(a) 4x2x2 Sparse Tensor 𝑨

a200 a201

a111

Data AccessesCycle

0

1

2

PE0 PE1

3

4

𝒏𝒏𝒛

(b) Extended CSR like format
for tensor (c) Two PEs accessing the sparse tensor

(extended CSR format)

PE0

𝒏𝒏𝒛 𝒊/𝒋 𝒌 𝒏𝒏𝒛 𝒊/𝒋 𝒌

0 0 x

a000 0 0

a011 1 1

0 3 x

a310 1 0

0 1 x

a111 1 1

0 2 x

a200 0 0

a201 0 1

(d) Sparse Tensor in CISS format

PE0 PE1
cycles

a000 0 0

a011 1 1

a111 1 1

a200 0 0

a201 0 1

a310 1 0slice
pointers

a310

PE1

a200 a201

a111

a000

a011

a310

1.6 1.8 1.9 1.9

4.3
6.1

11.2 11.2

0

2

4

6

8

10

12

2 4 8 16B
an

d
w

id
th

 (
G

B
/s

)

Number of PEs

Extended CSR CISS

(e) Achieved bandwidth extended CSR vs CISS

Non-contiguous
memory accesses

Contiguous memory
accesses every cycle Peak: 16 GB/s

0

1

2

3

4

𝒌

𝒋

𝒊 = 𝟎 𝒊 = 𝟏

𝒊 = 𝟐 𝒊 = 𝟑

𝒊 = 𝟎

𝒊 = 𝟑

𝒊 = 𝟏

𝒊 = 𝟐

4

2

2

𝒌
𝒋

𝒊
𝒋 𝒌

𝒊

0

1

2

3

.

.

.

.

PE0

PE0

PE1 a000 0 0 a111 1 1

a011 1 1 2

0& 1

a200 0 0

a201 0 1a310 1 0

3

& &

&

&

&

&

&

Figure 3: Storage formats – (a) a 4×2×2 sparse tensor A; (b) the sparse tensor stored in extended CSR format. Here
the slice pointers point to beginning of a slice in the array consisting of non-zero data elements and their mode 1 and mode 2
indices j and k. The data in sparse tensor is split across two PEs, where PE0 accesses data from the first slice i=0 and i=3,
and PE1 accesses data from slices i=1 and i=2. The reference sign & inside the white boxes represent pointer values; (c) two
PEs accessing the data from sparse tensor stored in extended CSR format shown in (b). Here each PE first reads a slice pointer
and then the non-zero values from that slice. The data accessed by the two PEs in the same cycle is stored in non-contiguous
memory locations; (d) the sparse tensor stored in the CISS format. Here a single CISS entry contains data from both PEs; thus
memory accesses for both PEs in each cycle are done at contiguous memory locations. “x” denotes don’t cares; (e) achieved
bandwidth comparison between extended CSR and CISS for different numbers of PEs using a single channel DDR4 memory.
Here the utilized bandwidth for CSR saturates at 1.9 GB/s for 8 PEs, while CISS is able to achieve 70% of the peak bandwidth.

5.1 Implementation Details of Tensaurus
Fig. 5 shows the architecture of Tensaurus, which consists

of a 2-D array (r×c) of compute PEs, a tensor load unit
(TLU), a matrix load unit (MLU), an array of scratchpad
memories (SPM) and a matrix store unit (MSU). TLU
reads the first operand tensor, which is either stored in
CISS format for sparse-dense kernels or dense format for
dense-dense kernels from the main memory. MLU reads the
dense operand matrices from the main memory and sends
them to the SPMs. The SPMs receive the matrix data
from the MLU and cache them in the double buffers. Each
PE gets the data from the TLU and the SPM, performs
VVMUL and VVADD operations in SIMD fashion (with
vector length as VLEN) and accumulates the results in
either a temporary shift register (TSR) or output shift reg-
ister (OSR) depending on the type of accumulation. When
the partial results for the current input tiles are completely
evaluated, the PE drains the result to the MSU. Although
each PE accumulates all the partial sums in local shift
registers for the current input tiles, different input tiles may
still update the same output element. Hence the MSU
accumulates the drained results from the compute PEs and
stores it in an output double buffer to perform reductions

across different tiles. When all the input tiles for an output
tile are processed, the MSU writes the results from the
output buffer to main memory.

5.2 Implementation of SF3 Compute Pattern

5.2.1 Tensor Load Unit (TLU)
The TLU reads the data for the first kernel operand from

the main memory, which is either a sparse tensor stored in
CISS format or a dense tensor stored in dense format. The
read data is then pushed to the hardware queues connecting
the TLU and the boundary PEs. The queues between the
TLU and the boundary PEs ensure that the TLU and PEs
can work asynchronously. To enable non-blocking mem-
ory accesses, the TLU is capable of handling out-of-order
memory responses. It tries to send a load request to the
main memory every clock cycle and pushes the request ID
to a hardware queue in-order. When the response for a
memory request arrives (out-of-order), the response data is
written to the hardware queue and the corresponding entry
is marked as completed. In each cycle, the TLU polls the
head of the hardware queue and pops the data if marked
as completed and sends it to the boundary PEs. Since the
CISS format ensures that the data accessed by the PEs

a000

a011

a310

b00 b01

b10 b11

B

c00 c01

c10 c11

C

A
𝒋

𝒌

𝒊 = 𝟎

𝒊 = 𝟑

𝒋

𝒇

𝒌

𝒇

a000 X

b00 b01

= t0
000 t0

001c00 c01

X

= y0
00 y0

01

a011 X

b10 b11

= t1
010 t1

011c10 c11

X

= y1
00 y1

01 y00 y01

+
=

a310 X

b10 b11

= t0
310 t0

311c00 c01

X

= y1
30 y1

31 y30 y31=

a111

a200 a201

𝒋

𝒌

𝒊 = 𝟏

𝒊 = 𝟐

a111 X

b10 b11

= t1
110 t1

111c10 c11

X

= y1
10 y1

11 y10 y11=

a200 X

b00 b01

= t0
200 t0

201c00 c01

X

= y0
20 y0

21 y20 y21=

a201 X = t1
200 t1

201c10 c11

+

t01
200 t01

201

y00 y01

y10 y11

y20 y21

y30 y31

Y

𝒊

𝒇

PE 0 PE 1

Figure 4: Execution of SpMTTKRP on two PEs.

at the same time is stored contiguously in the memory,
the TLU sends wide read requests (one CISS entry) to the
main memory to saturate the memory bandwidth.

5.2.2 Matrix Load Unit (MLU)
The MLU reads the data for the dense operand matrices

from the main memory. Similar to the TLU, it consists
of hardware queues to perform out-of-order memory reads.
The MLU reads data in chunks of c·V LEN ·dw bits from
the main memory and sends the data to the SPMs.

5.2.3 Scratchpad Memories
The SPMs are responsible for two major tasks: they read

the matrix data from MLU and store it in the local buffers,
and they serve a read request from the PEs in the corre-
sponding column of the PE array. To avoid serialization
between read and write to the buffers, the local buffers are
implemented as double buffers. Each SPM receives data in
chunks of V LEN ·dw bits from the MLU and stores it into
one of the buffers. The read and write port width of each
buffer is V LEN ·dw bits. Inside an SPM, a tile of a matrix
is banked such that consecutive rows from the matrix are
assigned to different buffers. Since a PE can request the
data from any row of the matrix, a crossbar is used to
connect different buffers to the PEs as shown in Fig. 5.
For SpMTTKRP and DMTTKRP, each SPM stores a

tile of both the dense operand matrices B and C. For
SpTTMc and DTTMc, only the SPM in the first column
stores a tile of both the first and second dense operand
matrices while the rest of the SPMs store only the tiles of
the second operand matrix C. Thus, the SPM in the first
column has 2× the amount of buffer capacity as compared
to other SPMs. For SpMM and GEMM, each SPM stores
tiles of the dense operand matrix B; and for SpMV and
GEMV, only the SPM in the first column of PE array is
active, and stores a tile of dense input vector b.

5.2.4 Compute PEs
The compute PEs are designed for efficient computation

of the SF3 compute pattern in Eq. (9). Fig. 5b shows
the design of a single compute PE. It consists of a control

processor (CP); two shift-registers: temporary shift register
(TSR) and output shift register (OSR); a VVMUL unit;
and a VVADD unit. The VVMUL and VVADD units
process vectors of size VLEN. The TSR and OSR consist of
TLEN and OLEN number of shift-registers, each of which
is V LEN ·dw bit wide. TSR is used to store the result of∑

D0
scalar·fiber0 in Eq. (9) and OSR stores the partial

sums for the output fibersout. Since for SpMM and SpMV,
fiber1 and op are not applicable, TSR is not used and OSR
stores the value of the computation

∑
D0

scalar · fiber0,
which also is the fibersout. The PEs in the same row
form a systolic array where the PEs on the left boundary
read the (scalar,j,k) triplets (in the case of SpMTTKRP,
DMTTKRP, SpTTMc and DTTMc) and (scalar,j) pairs
(in the case of SpMM, GEMM, SpMV and GEMV), and
forward it to the PEs in the same row. Here the scalar is
the non-zero element from the sparse tensor operand.

For SpMTTKRP, each PE requests the data from the kth

row of the C matrix from the SPM. The SPM receives the
request and sends VLEN elements from that row to the PE.
The PE then replicates the scalar to perform a VVMUL op-
eration corresponding to 1 in Fig. 2a and accumulates the
results in TSR. When all the non-zero entries inA(i,j,:) are
processed, the PE requests the SPM for the data from the
jth row of matrixB, performs a VVMUL operation with the
partial results in TSR followed by a VVADD with the par-
tial results in OSR 2 , and accumulates the result in OSR.
When all the non-zeros in the ith slice of the tensor (A(i,:,:))
are processed, the results in the OSR are sent to the MSU,
which writes them to the output buffer. Fig. 6 shows the
execution of SpMTTKRP kernel for the sparse tensor in
Fig. 3a on a 2×2 PE array. Here, the dense matrices are
tiled along the columns, banked along rows and stored in
different local buffers (VLEN is assumed to be one).
For SpTTMc, each PE acts in the exact same way as

in SpMTTKRP; however, when all the non-zero entries in
A(i,j,:) are processed and it has requested the data from
the jth row of matrix B, instead of directly performing
VVMUL with TSR as in case of SpMTTKRP, it streams
the values from the jth row of matrixB one by one. It then
replicates these values to perform VVMUL with TSR and

TLU

PE00

PEr0

PE10…

MLU

PE01

PEr1

PE11…

PE0c

PErc

PE1c…

…

…

…

…

MSU

H
B

M

Double Buffer Crossbar

SPM0 SPM1 SPM7

… … …

(a) (b)

< <
< <

TSR

OSR

VMUL

V
A

D
D

R
EP

EA
T

CP

𝒇𝒊𝒃𝒆𝒓𝟏 𝒐𝒓 𝒇𝒊𝒃𝒆𝒓𝟎

𝒔𝒄𝒂𝒍𝒂𝒓

(𝒔𝒄𝒂𝒍𝒂𝒓 . 𝒇𝒊𝒃𝒆𝒓𝟎)

𝒇𝒊𝒃𝒆𝒓𝟏 𝒐𝒑

𝐷
0

(…)

𝐷
0

(…)

𝐷
1

(…)

or

or

0

0

𝑫𝟎

(…)

Figure 5: Tensaurus architecture – (a) architecture diagram of Tensaurus; (b) design of a single PE.

PE0,0

PE1,0

Crossbar

b00

c00

SPM0

b10

c10

Reduction occurs in each PE

PE0,1

PE1,1

Crossbar

b01

c01

b11

c11

a000 × c00

a111 c10×

Cycle 2

PE0,0

PE1,0 PE1,1

Cycle 3

PE0,1

Global mem

a000

b00 b01

b10 b11

Bank1

Bank2

Bank1

Bank2

Dense Matrix B

SPM1

c00 c01

c10 c11

Dense Matrix C

0a0113a310

a111 12a200a201

tsr =

tsr =

tsr =

tsr =

a000 × c01

a111 c11×

tsr × b00

tsr b10×

Cycle 3

PE0,0

PE1,0 PE1,1

Cycle 4

PE0,1

osr =

osr =

osr =

osr =

tsr × b01

tsr b11×

tsr × b10

a200 c00×

Cycle 5

PE0,0

PE1,0 PE1,1

Cycle 6

PE0,1

osr +=

tsr =

osr +=

tsr +=

tsr × b11

a200 c01×

3

a201 c10×

Cycle 6

PE0,0

PE1,0 PE1,1

Cycle 7

PE0,1

tsr += tsr +=

3

a201 c11×

a310 × c00

tsr

Cycle 7

PE0,0

PE1,0

PE1,1

Cycle 8

PE0,1

tsr = tsr += a310 × c01

tsr

Cycle 4 Cycle 5

a011 × c10

2

PE0,0

PE1,0 PE1,1

PE0,1

tsr = tsr = a011 × c11

2Switch
slice

tsr × b10

tsr b00×

PE0,0

PE1,0 PE1,1

PE0,1

osr =

osr =

osr =

osr =

tsr × b11

tsr b01×

Cycle 8 Cycle 9

Switch
slice

Switch
slice

Switch
slice

Bank
conflict

Bank
conflict

0

1

Cycle 1

PE0,0

PE1,0 PE1,1

Cycle 2

PE0,1

0

1

Start Start

Start Start

(a) (b)

Figure 6: SpMTTKRP on Tensaurus – (a) 2×2 PE array in Tensaurus where dense matrix B is tiled, banked and
stored in the buffers of different SPMs. The data from sparse tensor A is stored in the memory in CISS format (only
data values shown); (b) cycle by cycle execution of SpMTTKRP kernel on the 2×2 PE array. This is the exact same
computation as the one shown in Fig. 4, however, here we chunk the vector computations (with VLEN=2) in PE0 of Fig. 4
into small chunks (with VLEN=1) and perform them in PE00 and PE01. Similarly, the chunks of vector computations
in PE1 are performed in PE10 and PE11.

accumulates the results in one of the shift-registers in OSR.
The number of shift registers in OSR (OLEN) is thus set
to be VLEN. This approach in effect computes the outer-
product of the row from matrixB and the value in TSR 2 .
For SpMM, each PE sends the column index j to its

SPM, which reads VLEN elements from the jth row of ma-
trix B and sends them to the PE. The PE then replicates
the scalar value from sparse matrix, performs VVMUL
operation corresponding to 1 in Fig. 2c and accumulates
the result in OSR. When all the non-zero entries in the
current row of the sparse matrix A(i,:) are processed, the
PE drains the OSR data to the MSU.
For SpMV, since the second operand is a dense vector

instead of a dense matrix, only the first column of PEs
in the systolic array is active. Each PE sends the column
index j of the non-zero entry A(i,j) to the SPM similar
to SpMM. However, this time the SPM reads only one
element from the jth index of the dense vector b and sends
it to the PE. The PE then performs a scalar multiplication
between the scalar value from sparse matrix A and the

dense vector element, corresponding to 1 in Fig. 2d, and
accumulates the result in a single register of OSR. When all
the non-zero entries in the current row of the sparse matrix
are processed, the PE drains the OSR data to MSU.
For dense operations (DMTTKRP, DTTMc, GEMM

and GEMV), the TLU reads the data in dense format,
constructs a CISS representation on the fly and sends it to
the PEs. The PEs and other units remain unaware that
they are performing a dense computation. Since in the case
of dense operations each PE from the same column would
request the same entry from the SPM, these requests can
get serialized by the crossbar. To avoid such serialization,
for dense operations, only the PE in the first row is respon-
sible for sending row addresses to the SPM and the crossbar
broadcasts the response to all the PEs in the same column.

5.2.5 Matrix Store Unit (MSU)
The MSU is responsible for receiving the partial results

from the PEs and accumulating them in the output buffer.
The MSU drains the output buffer to the main memory

Table 2: Area and power breakdown of Tensaurus.

Component Area(mm2) % Power (mW) %

PE 0.625 27.2 % 402.30 40.9 %
Xbar 0.066 2.8 % 24.27 2.5%
SPM 0.832 36.2 % 296.05 30.1 %
MSU 0.759 33.0 % 247.03 25.2 %
TLU 0.009 0.4 % 6.28 0.6%
MLU 0.009 0.4 % 6.28 0.6 %

Total 2.3 100 % 982.21 100 %

when all the input tiles corresponding to an output tile
have been processed. Although buffering the intermediate
results in the output buffer reduces the number of off-chip
memory accesses, it also limits the tile size of the sparse
input tensor. Since for very sparse tensors the benefit of
storing the intermediate results in the buffer is outweighed
by the larger tile size of the tensor (as it results in more reuse
of the dense operand matrices), the MSU can be configured
to directly accumulate the results in the main memory.

6. EXPERIMENTAL SETUP

Simulation Infrastructure – To evaluate the perfor-
mance of Tensaurus, we model our architecture consisting
of TLU, MLU, SPMs, PEs, MSU and HBM using the gem5
simulator [38]. We use an 8×8 PE array with V LEN=4.
Each SPM except the first consists of a double buffer of
size 2×16KB where each side of the double buffer is di-
vided into 8 2KB banks. The SPM in the first column
has a double buffer of size 2×32KB divided into 16 2KB
banks. The MSU consists of an output double buffer of size
2×128KB, which is further divided into 8 16KB banks.
For HBM, we use the gem5 model, which supports up to
8 128-bit physical channels, runs at 1GHz clock frequency
and provides a peak memory bandwidth of 128 GB/s. Ten-
saurus is attached to a CPU as a co-processor, where the
CPU executes instructions to configure Tensaurus to run a
specific tensor kernel. The configuration instructions config-
ure Tensaurus for: (1) mode of operation like SpMTTKRP,
SpMM, etc. and (2) size of tensors and matrices.

Measurements – We implemented the PEs and the cross-
bar in RTL using PyMTL [39] and synthesized them using
the Synopsys Design Compiler using TSMC 28nm library
and placed-and-routed using Cadence Innovus. For the
SPM and MSU, since the majority of area and power is
dominated by scratchpads, we used CACTI 7.0 [40] to
model SRAM latencies, area and power. For TLU, we
pessimistically assumed the same area and power as a sin-
gle PE. Table 2 shows the area and power breakdown of
different components of the design. For HBM we use the
energy numbers from Shilov et al. [41].

Baselines – We compare our design against four baselines:
CPU, GPU, Cambricon-X [35] and T2S-Tensor [17].

CPU: We use SPLATT [20] and Sparse BLAS [42] to
evaluate our benchmarks on a single core of an Intel(R)
Xeon(R) CPU E7-8867 running at 2.40 GHz with 32 KB L1
cache, 256 KB L2 cache and 45 MB of L3 cache. For energy
estimates we use McPAT 1.3 [43] CPU energy models.

Table 3: Tensors with their dimensions, number of
non-zeros (nnz), density and problem domain.

Tensor Dimensions nnz Density Domain

nell-2 12K × 9K × 28K 77M 2.5e-5 NLP
netflix 480K × 18K × 2K 100M 5.7e-6 Rec. Sys.
poisson3D 3K × 3K × 3K 99M 3.6e-3 Synthetic

Table 4: Weight matrices from AlexNet and VGG-16 with
their dimensions, number of non-zeros (nnz) and density.

Layer Dim. Density Layer Dim. Density

A
le
x
N
e
t c1 96 × 363 0.84 c2 256 × 1200 0.38

c3 384 × 2304 0.35 c4 384 × 1728 0.37
c5 256 × 1728 0.37 fc6 9216 × 4096 0.09
fc7 4096 × 4096 0.09 fc8 4096 × 1000 0.25

V
G
G
-1

6

c1 1 64 × 27 0.58 c1 2 64 × 576 0.22
c2 1 128 × 1152 0.34 c2 2 128 × 1152 0.36
c3 1 256 × 1152 0.53 c3 2 256 × 2304 0.24
c3 3 256 × 2304 0.42 c4 1 512 × 2304 0.32
c4 2 512 × 4608 0.27 c4 3 512 × 4608 0.34
c5 1 512 × 4608 0.35 c5 2 512 × 4608 0.29
c5 3 512 × 4608 0.36 fc6 25088 × 2096 0.01
fc7 4096 × 4096 0.02 fc8 4096 × 1000 0.09

GPU: We use ParTI [44,45] and cuSPARSE [46] to eval-
uate the benchmarks on a modern GPU Titan Xp, which
has GDDR5x DRAM with a peak bandwidth of 547.6
GB/s and a peak 32-bit performance of 12.15 TFLOP/s.
We use CUDA 9.1 for programming the GPU. For power
estimation, we use thermal design power (TDP) from the
GPU datasheet.

Accelerator: For SpMM, we also compare our work against
the Cambricon-X [35] state-of-the-art CNN accelerator,
which uses sparse weights and dense activations. We imple-
ment the architecture of Cambricon-X in gem5 and scale
it to have the same bitwidth, clock frequency, number of
multiply-accumulate (MAC) units, size of on-chip RAM
and DRAM bandwidth as our accelerator. For energy
comparisons, we use the power numbers from [35] which
are in 65nm technology node and scale them to 28nm us-
ing [47,48]. For DRAM energy, we measure the number
of DRAM accesses from our simulator and use the HBM
energy from Shilov et al. [41].
For DMTTKRP, DTTMc and GEMM we compare our

design against T2S-Tensor [17], which implements these
kernels on an FPGA. We scale their design to use the same
number of MAC units and clock frequency as our design.

Datasets – For SpMTTKRP and SpTTMc, we use the
tensor datasets shown in Table 3. NELL-2 tensor is a
snapshot of the Never Ending Language Learner knowledge
base that attempts to create a computer system that learns
how to read the web [16]. The Netflix dataset is taken
from Netflix Prize competition [15] and Poisson3D is taken
from [27]. NELL-2 and Netflix are public datasets and
taken from Smith et al. [50].
For SpMM, we use the pruned models for AlexNet and

VGG-16 [51]. We did not use any of the newer CNN models
for this study as their pruned weights are not publicly avail-
able. Table 4 shows the sparse weight matrices in these
CNN models with their size and densities. For SpMM,
we also use the sparse matrices from SuiteSparse [49] and
graph benchmarks from GraphSAGE [28]. Table 5 shows

10−1 100 101 102

Operation intensity (OPs/byte)

101

102

103

P
er

fo
rm

an
ce

 (
G

O
P

/s
)

netflix-m2

nell-2-m1
nell-2-m0

nell-2-m2

poisson3D-m0,
poisson3D-m1,
poisson3D-m2

dense

netflix-m0,
netflix-m1

(a) Roofline for SpMTTKRP.

10−1 100 101 102

Operation intensity (OPs/byte)

101

102

103

P
er

fo
rm

an
ce

 (
G

O
P

/s
)

netflix-m0
netflix-m1

netflix-m2

nell-2-m1

nell-2-m0
nell-2-m2 dense

poisson3D-m1,
poisson3D-m2

poisson3D-m0

(b) Roofline for SpTTMc.

10−1 100 101 102

Operation intensity (OPs/byte)

101

102

103

P
er

fo
rm

an
ce

 (
G

O
P

/s
)

wiki-Vote

c2, c3, c4, c5
c3_1, c3_3,
c4_1, c4_2, c4_3
c5_1, c5_2, c5_3

c3_2

poisson3Da
scircuit

p2p-Gnutella31

c2_2

c2_1

citeseer cage12

offshore
cora

2cubes_sphere

c1

m133-b3

amazon0312

email-Enron
c1_1

c1_2

sinkhorn
filter3D

+

dense

(c) Roofline for SpMM.

Figure 7: Roofline evaluation of SpMTTKRP, SpTTMc and SpMM on Tensaurus – the x-axis shows operation
intensity which is number of operations (multiply and add) performed for each byte of data accessed from the off-chip
memory; the y-axis shows the performance in GOP/s.

Table 5: Matrices from SuiteSparse [49] with their
dimensions, number of non-zeros (nnz), density and
problem domain.

Matrix Dim nnz Density Domain

amazon0312 401K × 401K 3.2M 1.9e-5 Copurchase network
m133-b3 200K × 200K 801K 2.0e-5 Combinatorics
scircuit 171K × 171K 959K 3.2e-5 Circuit simulation
p2pGnutella31 63K × 63K 148K 3.7e-5 p2p network
offshore 260K × 260K 4.2M 6.2e-5 EM Problem
cage12 130K × 130K 2.0M 1.1e-4 Weighted graph
2cubes-sphere 101K × 101K 1.6M 1.5e-4 EM Problem
filter3D 106K × 106K 2.7M 2.4e-4 Reduction problem
emailEnron 36.7K × 36.7K368K 2.7e-4 Email network
citeseer 3.3K × 3.3K 4.7K 4.2e-4 Graph Learning
cora 2.7K × 2.7K 5.3K 7.2e-4 Graph Learning
wikiVote 8.3K × 8.3K 104K 1.5e-3 Wikipedia network
poisson3Da 14K × 14K 353K 1.8e-3 Fluid Dynamics

the sparse matrices from SuiteSparse and GraphSAGE. For
SpMV, we use the same matrices from SuiteSparse and
GraphSAGE as in SpMM.

7. EVALUATION

7.1 Roofline Evaluation
Fig. 7 shows the throughput of SpMTTKRP, DMT-

TKRP, SpTTMc, DTTMc, SpMM, and GEMM, under
the roofline [52] of our accelerator. The horizontal line
towards the right of the plot shows the peak attainable
performance from the design when the operation intensity
is high (kernel is compute bound) and the inclined line
(with slope 1) towards the left shows the peak attainable
performance when the operation intensity is low (kernel is
memory bound). The value of throughput for operation
intensity of 1 represents the peak memory bandwidth (in
GB/s). The gap between the roofline and the achieved per-
formance of a kernel indicates the inefficiencies within the
hardware. Our design consists of an 8×8 PE array, each
with 4 SIMD MAC units and hence it has 8×8×4×2=512
scalar multipliers and adders. Since we simulate our design
for a 2GHz clock frequency, assume that the scratchpads
are synchronous, and that each PE spends every other clock
cycle to access the scratchpads instead of doing a MAC, the
peak attainable throughput is 512×2×0.5=512 GOP/s.
For peak memory bandwidth, we use the peak bandwidth
of HBM1 which is 128 GB/s.

Fig. 7a shows the achieved throughput for SpMTTKRP
along all the three modes of the three tensors shown in
Table 3. Here, SpMTTKRP is memory bound for all the
tensors except poisson3D, where it is compute bound due
to the highest density of poisson3D among all the ten-
sors. For all the SpMTTKRP kernels Tensaurus is able to
perform close to the peak throughput.
Fig. 7b shows the achieved throughput for SpTTMc

for the three tensors along each mode. Here, nell-2-m0,
nell-2-m1 and poisson3D are compute bound while the
others are memory bound and the achieved performance on
each kernel is very close to the peak throughput. It can also
be seen from Figs. 7a and 7b that the operation intensity for
the same tensor along the same mode is higher for SpTTMc
as compared to SpMTTKRP. The reason behind this is
SpTTMc performs a Kronecker product as an intermedi-
ate operation as shown in Fig. 2d, which has more MAC
operations compared to the Hadamard product in Fig. 2c.
Fig. 7c shows the achieved throughput for sparse convo-

lution layers in AlexNet and VGG-16 and sparse matrices
from SuiteSparse [49] and GraphSAGE [28] for the SpMM
kernel. For all the layers except c1 1 and c1 2 the achieved
throughput is very close to the peak throughput. For c1 1
and c1 2, since the sparse weight matrices are very small
(Table 4), the scratchpads and MAC units in Tensaurus
are underutilized. For the SuiteSparse and GraphSAGE
matrices since the densities of these matrices are very low
(Table 5), the SpMM kernel is memory bound and Ten-
saurus achieves very close to the peak throughput in the
memory bound region.
Figs. 7a, 7b and 7c also show the achieved throughput

for DMTTKRP, DTTMc and GEMM on our accelerator
(labeled as“dense”). It can be seen that all the dense kernels
are compute bound and our accelerator achieves close to
the peak throughput for each of them.

7.2 Performance Evaluation
Fig. 8a shows the speedup of Tensaurus and GPU (ParTI)

on SpMTTKRP for the three tensors along each mode over
the CPU (SPLATT) baseline. Tensaurus achieves a ge-
omean speedup of 22.9× over CPU and 3.1× over GPU.
Fig. 9a shows the speedup of Tensaurus, and GPU

(ParTI) for SpTTMc on three tensors along each mode over
the CPU (SPLATT) baseline. Here, Tensaurus achieves

nell-2-m0

nell-2-m1

nell-2-m2

netflix-m0

netflix-m1

netflix-m2

poisson3D-m0

poisson3D-m1

poisson3D-m2

geo mean

Benchmarks

10 1

100

101

102
Sp

ee
du

p
ov

er
 C

PU
Tensaurus GPU

(a) Speedup for SpMTTKRP.

nell-2-m0

nell-2-m1

nell-2-m2

netflix-m0

netflix-m1

netflix-m2

poisson3D-m0

poisson3D-m1

poisson3D-m2

geo mean

Benchmarks

10 1

100

101

102

103

E
ne

rg
y

B
en

ef
it

ov
er

 C
PU

Tensaurus GPU

(b) Energy benefit for SpMTTKRP.

Figure 8: Speedup and energy benefit of Tensaurus and GPU (PaRTI) over CPU (SPLATT) baseline for
SpMTTKRP on sparse tensors in Table 3.

nell-2-m0

nell-2-m1

nell-2-m2

netflix-m0

netflix-m1

netflix-m2

poisson3D-m0

poisson3D-m1

poisson3D-m2

geo mean

Benchmarks

10 1

100

101

102

Sp
ee

du
p

ov
er

 C
PU

Tensaurus GPU

(a) Speedup for SpTTMc.

nell-2-m0

nell-2-m1

nell-2-m2

netflix-m0

netflix-m1

netflix-m2

poisson3D-m0

poisson3D-m1

poisson3D-m2

geo mean

Benchmarks

10 1

100

101

102

E
ne

rg
y

B
en

ef
it

ov
er

 C
PU

Tensaurus GPU

(b) Energy benefit for SpTTMc.

Figure 9: Speedup and energy benefit of Tensaurus and GPU (PaRTI) over CPU (SPLATT) baseline for
SpTTMc on sparse tensors in Table 3.

6.02× speedup over CPU. However, Tensaurus achieves
0.1× of the performance of the GPU baseline (PaRTI); in
PaRTI, a significant portion of the SpTTMc algorithm runs
on the host CPU, but for comparison with Tensaurus we do
not take into account the CPU execution time. After taking
CPU execution time into account, Tensaurus would achieve
a 5× speedup over GPU. Unlike SpMTTKRP, where the
speedup of Tensaurus is more than 20× over CPU, we also
achieve a lower speedup of 6.02× in the case of SpTTMc.
The reason behind this is SpTTMc benefits significantly
from the operand factorization as discussed in Section 2.
A smaller tile size and on-chip memory limits operand fac-
toring opportunities, and Tensaurus uses just 512KB of
on-chip memory as compared to 45MB of L3 cache in the
case of the CPU.
Fig. 10a shows the speedup of Tensaurus, GPU (cuS-

PARSE) and Cambricon-X over the CPU (SparseBLAS)
baseline for AlexNet and VGG-16. For most of the convolu-
tion layers Tensaurus performs better than all the baselines.
On average, Tensaurus is 349.2×, 1.8× and 1.9× faster
than CPU, GPU, and Cambricon-X, respectively.
Fig. 11a shows the speedup of Tensaurus, GPU and

Cambricon-X over CPU baseline for benchmarks from
SuiteSparse and GraphSAGE. Unlike CNNs where the
matrices have low sparsity (high density), these matrices
have really high sparsity (low density). Tensaurus per-
forms better than Cambricon-X on all the matrices and

often beats GPU. Overall Tensaurus achieves 125.8× and
119.7× speedup over CPU and Cambricon-X, respectively
and achieves 0.87× of the performance of GPU for these
matrices.

To further analyse the performance of Tensaurus for dif-
ferent densities of sparse matrix, we generate synthetic ma-
trices and measure SpMM performance for Tensaurus and
all the baselines. Fig. 13 shows the speedup of Tensaurus,
GPU and Cambricon-X over CPU baseline for different
densities of sparse matrix. As it can be seen, Tensaurus
performs consistently better than all the baselines and the
performance of GPU is very similar to the performance of
Tensaurus.

Fig. 12a shows the speedup of Tensaurus, GPU (cuS-
PARSE) and Cambricon-X over CPU (SparseBLAS) base-
line for benchmarks from SuiteSparse and GraphSAGE
for SpMV kernel. Overall Tensaurus achieves 7.7× and
0.45× speedup over CPU and GPU. Since SpMV is highly
memory bound and GPU has 5× more bandwidth and
more on-chip memory the performance of SpMV is better
on GPU as compared to Tensaurus.
We further compare the performance of DMTTKRP,

DTTMc and GEMM with T2S-Tensor. Table 6 shows the
throughput of our accelerator in dense mode (Tensaurus-
dense) compared to T2S-Tensor. As it can be seen for DMT-
TKRP, DTTMc and GEMM, Tensaurus-dense achieves
close to 0.5× of the performance of T2S-Tensor, which is

c1 c2 c3 c4 c5 fc6 fc7 fc8 c1_1
c1_2

c2_1
c2_2

c3_1
c3_2

c3_3
c4_1

c4_2
c4_3

c5_1
c5_2

c5_3
fc6 fc7 fc8 Alexnet

VGG-16
Convolution Layers

10 1

100

101

102

103
Sp

ee
du

p
AlexNet VGG-16

Tensaurus GPU Cambricon-X

(a) Speedup over CPU.

c1 c2 c3 c4 c5 fc6 fc7 fc8 c1_1
c1_2

c2_1
c2_2

c3_1
c3_2

c3_3
c4_1

c4_2
c4_3

c5_1
c5_2

c5_3
fc6 fc7 fc8 Alexnet

VGG-16
Convolution Layers

10 1

100

101

102

103

104

E
ne

rg
y

B
en

ef
it

AlexNet VGG-16
Tensaurus GPU Cambricon-X

(b) Energy benefit over CPU.

Figure 10: Speedup and energy benefit of Tensaurus, GPU (cuSPARSE) and Cambricon-X over CPU
(Sparse BLAS) baseline for SpMM (convolution layers) and SpMV (fully connected layers) on sparse
matrices from AlexNet and VGG-16.

a pessimistic estimate since we assume perfect scaling for
T2S-Tensor.

Table 6: Comparison between the performance of
Tensaurus-dense and T2S-Tensor [17].

Benchmark Throughput (GOP/s) Speedup
Tensaurus-dense T2S-Tensor

DMTTKRP 511.9 986.3 0.52×
DTTMc 498.9 926.6 0.54×
GEMM 506.5 1019.8 0.49×

7.3 Energy Evaluation
Figs. 8b and 9b show the energy benefit of our accel-

erator and GPU over the CPU baseline for SpMTTKRP
and SpTTMc on three tensors along each mode. Overall
our accelerator is 223.2× and 292.8× more energy efficient
than CPU and GPU for SpMTTKRP and 23.2× and 30.9×
more energy efficient than CPU and GPU for SpTTMc.
Fig. 10b shows the energy benefit of our accelerator,

GPU and Cambricon-X over the CPU baseline for AlexNet
and VGG-16. On average, our accelerator is 1983.7×,
226.6× and 1.7× more energy efficient than CPU, GPU
and Cambricon-X. Fig. 11b shows the energy benefit of our
accelerator for SpMM on SuiteSparse and GraphSAGE ma-
trices. Overall our accelerator is 405.6×, 62.5×, and 101.5×
more energy efficient than CPU, GPU and Cambricon-X.

Fig. 12b shows the energy benefit of our accelerator and
GPU over the CPU baseline for SpMV on matrices from
SuiteSparse. For SpMV, our accelerator is 46.4× and 60.1×
more energy efficient than CPU and GPU.

8. RELATED WORK

Sparse Storage Formats – Many sparse storage formats
have been proposed in the literature. CSR (Compressed
Sparse Row), CSC (Compressed Sparse Column) and COO
(Co-ordinate) are the most commonly used sparse storage
formats for CPUs. Liu et al. [53] proposed a sparse tensor
storage format F-COO, which is similar to the co-ordinate
format and used it for GPUs. CSF [20] and Hi-COO [21] are
other sparse tensor storage formats that are are based on
CSR and COO, respectively. OuterSPACE [36] uses a vari-
ant of CSR and CSC formats called CR and CC for sparse-
sparse matrix-matrix multiplication (SpGEMM). For ma-
chine learning hardware, researchers have proposed multiple
variants of CSR and CSC formats. For example, Cambricon-
X [35] proposed a modification of CSR format where the
non-zeros are compressed and stored in contiguous memory
and index vectors are used to decode the row and column
indices. EIE [54] uses a variant of CSC storage format
where instead of storing the row indices they store the num-
ber of zeros before a non-zero element. However, since these
works focus on deep learning, especially CNNs, their sparse
storage format is specialized for low sparsity (high density).

Software Frameworks – TACO [55] is a language and
compiler framework to generate high-performance code for
sparse matrix and tensor kernels for CPUs. Kjolstad et
al. [56] introduced workspace optimizations in TACO to
implement operand factoring optimizations in tensor ker-
nels. SPLATT [20,27] introduced a C library implementing
SpMTTKRP and SpTTMc with shared memory paralleliza-
tion. Bhaskaran et al. [57] proposed various techniques to
reduce memory usage and execution time for sparse ten-
sor factorization algorithms. Ballard et al. [19] and Choi

amazon0312

m133-b3

scircuit

p2p-Gnutella31

offshore

cage12

2cubes_sphere

filter3D

email-Enron

citeseer

cora
wiki-Vote

poisson3Da

geo mean

Benchmarks

10 1

100

101

102

103
Sp

ee
du

p
ov

er
 C

PU
Tensaurus GPU Cambricon-X

(a) Speedup for SpMM.

amazon0312

m133-b3

scircuit

p2p-Gnutella31

offshore

cage12

2cubes_sphere

filter3D

email-Enron

citeseer

cora
wiki-Vote

poisson3Da

geo mean

Benchmarks

10 1

100

101

102

103

E
ne

rg
y

B
en

ef
it

ov
er

 C
PU

Tensaurus GPU Cambricon-X

(b) Energy benefit for SpMM.

Figure 11: Speedup and energy benefit of Tensaurus, GPU (cuSPARSE) and Cambricon-X over CPU
(Sparse BLAS) baseline for SpMM on sparse matrices from SuiteSparse and GraphSAGE.

m133-b3

scircuit

p2p-Gnutella31

offshore

cage12

2cubes_sphere

filter3D

email-Enron

citeseer

cora
wiki-Vote

poisson3Da

geo mean

Benchmarks

10 1

100

101

102

103

Sp
ee

du
p

ov
er

 C
PU

Tensaurus GPU

(a) Speedup for SpMV.

m133-b3

scircuit

p2p-Gnutella31

offshore

cage12

2cubes_sphere

filter3D

email-Enron

citeseer

cora
wiki-Vote

poisson3Da

geo mean

Benchmarks

10 2

10 1

100

101

102

103

E
ne

rg
y

B
en

ef
it

ov
er

 C
PU

Tensaurus GPU

(b) Energy benefit for SpMV.

Figure 12: Speedup and energy benefit of Tensaurus, GPU (cuSPARSE) and Cambricon-X over CPU
(Sparse BLAS) baseline for SpMV on sparse matrices from SuiteSparse and GraphSAGE.

0.0002
0.0004
0.0006
0.0008
0.001
0.003
0.005
0.007
0.009
0.02
0.04
0.06
0.08
0.1
0.3
0.5
0.7
0.9

Densities

100

101

102

103

Sp
ee

du
p

Tensaurus GPU Cambricon-X

Figure 13: Speedup of Tensaurus, GPU (cuS-
PARSE) and Cambricon-X over CPU (Sparse
BLAS) baseline for SpMM on synthetic matrices
with density varying from 0.0001 to 0.9.

et al. [26] proposed methods to perform DMTTKRP and
DTTMc on CPU and GPU, respectively.

Hardware Accelerators – Srivastava et al. [17] proposed
a language and compilation framework called T2S-Tensor
to generate high performance hardware for dense tensor
computations such as GEMM, DMTTKRP and DTTMc.
Zhang et al. [18] proposed a hardware accelerator for
DTTMc. Hegde et al. [58] proposed a hardware accel-
erator called ExTensor for sparse tensor algebra using the
ideas of merge lattice proposed in TACO [55]. This work,

however, does not accelerate sparse tensor factorizations
as they involve more than two operands and their per-
formance are significantly affected by operand factoring
optimizations. ExTensor also uses significantly more on-
chip storage than Tensaurus (30 MB as compared to 0.5
MB). This allows ExTensor to read an entire tile of the
sparse input tensor on-chip in a streaming manner, avoiding
the need for a special sparse storage format. However, this
comes at the cost of area and energy where ExTensor is
40× larger than Tensaurus for the same technology node.
Kanellopoulos et al. proposed a hardware-software coopera-
tive mechanism to accelerate sparse matrix operations. For
SpMM and GEMM, prior works involving ASIC implemen-
tations include Cambricon-X [35], Cambricon-S [59], Cn-
vlutin [60], SCNN [61], SparTen [62] and OuterSPACE [36].
Cambricon-X [35] and Cambricon-S [59] implement hard-
ware accelerators for SpMM and SpGEMM in CNNs where
either the weight matrices or both weight matrices and
neurons are sparse. SCNN [61] proposes a SpGEMM ac-
celerator for CNNs which can exploit the sparsity in both
weights and neurons. OuterSPACE [36] proposed an accel-
erator design for SpGEMM. EIE [54] proposes the SpMSpV
(sparse matrix sparse vector multiplication) accelerator for
fully connected layers in CNN and show significant perfor-
mance gains over CPU and GPU. TPU [63] implemented a
2-d systolic array for GEMM. Prior work involving FPGA
implementations for sparse-dense and sparse-sparse matrix-

matrix and matrix-vector accelerators include [64], ESE [65]
and [37]. Lu et al. [64] proposed a CNN accelerator with
sparse weights. ESE [65] proposed an FPGA-accelerator
for SpMV in LSTMs. Fowers et al. [37] proposed SpMV
accelerator for sparse matrices.

9. CONCLUSION
In this work, we propose a new sparse storage format

which allows accessing sparse data in vectorized manner
and co-design a hardware accelerator for sparse and dense
tensor factorizations. We extracted a common compute
pattern among different tensor factorizations and matrix op-
erations, and implemented the pattern in hardware. With
such hardware software co-design we achieve significant
speedup and energy benefit over multiple hardware and
software baselines.

Acknowledgement
We thank Ayoub Benkhoris and Congyang Li for their
contributions to the RTL simulation and verification. We
also appreciate the help from Ritchie Zhao, who provided
the models for CNN benchmarks. This research was funded
in part by CRISP, one of six centers in JUMP, a Semicon-
ductor Research Corporation (SRC) program sponsored
by DARPA, under NSF Awards #1453378, #1512937,
#1909661, NSF/Intel CAPA Award #1723773, and by
AFRL and DARPA under agreement number FA8650-18-
2-7863. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of AFRL and DARPA or the U.S. Government.

10. REFERENCES
[1] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E.

Papalexakis, and C. Faloutsos, “Tensor Decomposition for
Signal Processing and Machine Learning,” IEEE Trans. on
Signal Processing, 2017.

[2] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao,
C. Caiafa, and H. A. Phan, “Tensor Decompositions for Signal
Processing Applications: From Two-Way to Multiway
Component Analysis,” IEEE Signal Processing Magazine, 2015.

[3] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear Analysis of
Image Ensembles: Tensorfaces,” European Conf. on Computer
Vision, 2002.

[4] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos,
“ParCube: Sparse Parallelizable Tensor Decompositions,” Joint
European Conf. on Machine Learning and Knowledge Discovery
in Databases, 2012.

[5] J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and Z. Chen, “CubeSVD:
A Novel Approach to Personalized Web Search,” Int’l Conf. on
World Wide Web, 2005.

[6] T. Kolda and B. Bader, “The TOPHITS Model for Higher-order
Web Link Analysis,” Workshop on Link Analysis,
Counterterrorism and Security, 2006.

[7] J. C. Ho, J. Ghosh, and J. Sun, “Marble: High-throughput
Phenotyping from Electronic Health Records via Sparse
Nonnegative Tensor Factorization,” Int’l Conf. on Knowledge
Discovery and Data Mining, 2014.

[8] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “Model
Compression and Acceleration for Deep Neural Networks: The

Principles, Progress, and Challenges,” IEEE Signal Processing
Magazine, 2018.

[9] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting Linear Structure Within Convolutional Networks for
Efficient Evaluation,” Int’l Conf. on Neural Information
Processing Systems (NIPS), 2014.

[10] V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S.
Lempitsky, “Speeding-up Convolutional Neural Networks Using
Fine-tuned CP-Decomposition,” arXiv preprint
arXiv:1412.6553, 2014.

[11] T. G. Kolda and B. W. Bader, “Tensor Decompositions and
Applications,” SIAM Review, 2009.

[12] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and
N. Andrew, “Deep Learning with COTS HPC Systems,” Int’l
Conf. on Machine Learning, 2013.

[13] H. Esmaeilzadeh, P. Saeedi, B. N. Araabi, C. Lucas, and S. M.
Fakhraie, “Neural Network Stream Processing Core (NnSP) for
Embedded Systems,” Int’l Symp. on Circuits and Systems, 2006.

[14] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the Speed
of Neural Networks on CPUs,” Workshop on Deep Learning
and Unsupervised Feature Learning, NIPS, 2011.

[15] J. Bennett, S. Lanning, et al., “The Netflix Prize,” Proceedings
of KDD Cup and Workshop, 2007.

[16] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R.
Hruschka Jr., and T. M. Mitchell, “Toward an Architecture for
Never-Ending Language Learning.,” AAAI, 2010.

[17] N. Srivastava, H. Rong, P. Barua, G. Feng, H. Cao, Z. Zhang,
D. Albonesi, V. Sarkar, W. Chen, P. Petersen, G. Lowney, A. H.
Herr, C. Hughes, T. Mattson, and P. Dubey, “T2S-Tensor:
Productively Generating High-Performance Spatial Hardware
for Dense Tensor Computations,” IEEE Symp. on Field
Programmable Custom Computing Machines (FCCM), 2019.

[18] K. Zhang, X. Zhang, and Z. Zhang, “Tucker Tensor
Decomposition on FPGA,” arXiv preprint arXiv:1907.01522,
2019.

[19] G. Ballard, K. Hayashi, and K. Ramakrishnan, “Parallel
Nonnegative CP Decomposition of Dense Tensors,” Int’l Conf.
on High Performance Computing (HiPC), 2018.

[20] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis,
“SPLATT: Efficient and Parallel Sparse Tensor-Matrix
Multiplication,” Int’l Parallel and Distributed Processing Symp.
(IPDPS), 2015.

[21] J. Li, J. Sun, and R. Vuduc, “HiCOO: Hierarchical Storage of
Sparse Tensors,” Int’l Conf. for High Performance Computing,
Networking, Storage and Analysis, 2018.

[22] J. Choi, X. Liu, S. Smith, and T. Simon, “Blocking
Optimization Techniques for Sparse Tensor Computation,” Int’l
Parallel and Distributed Processing Symp. (IPDPS), 2018.

[23] L. De Lathauwer, B. De Moor, and J. Vandewalle, “On The
Best Rank-1 and Rank-(r 1, r 2,..., rn) Approximation of
Higher-Order Tensors,” SIAM Journal on Matrix Analysis and
Applications, 2000.

[24] V. T. Chakaravarthy, J. W. Choi, D. J. Joseph, X. Liu,
P. Murali, Y. Sabharwal, and D. Sreedhar, “On Optimizing
Distributed Tucker Decomposition for Dense Tensors,” Int’l
Parallel and Distributed Processing Symp. (IPDPS), 2017.

[25] G. Ballard, A. Klinvex, and T. G. Kolda, “TuckerMPI: A
Parallel C++/MPI Software Package for Large-Scale Data
Compression via the Tucker Tensor Decomposition,” arXiv
preprint arXiv:1901.06043, 2019.

[26] J. Choi, X. Liu, and V. Chakaravarthy, “High-performance
dense tucker decomposition on GPU clusters,” Int’l Conf. for
High Performance Computing, Networking, Storage, and
Analysis, 2018.

[27] S. Smith and G. Karypis, “Accelerating the Tucker
Decomposition with Compressed Sparse Tensors,” European
Conference on Parallel Processing, 2017.

[28] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive
Representation Learning on Large Graphs,” Advances in Neural
Information Processing Systems, 2017.

[29] T. N. Kipf and M. Welling, “Semi-Supervised Classification with
Graph Convolutional Networks,” arXiv preprint
arXiv:1609.02907, 2016.

[30] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer, “cuDNN: Efficient Primitives
for Deep Learning,” arXiv preprint arXiv:1410.0759, 2014.

[31] S. Brin and L. Page, “The Anatomy of a Large-Scale
Hypertextual Web Search Engine,” Computer Networks and
ISDN Systems, 1998.

[32] E. Nurvitadhi, A. Mishra, and D. Marr, “A Sparse Matrix
Vector Multiply Accelerator for Support Vector Machine,” Int’l
Conf. on Compilers, Architecture and Synthesis for Embedded
Systems, 2015.

[33] A. K. Mishra, E. Nurvitadhi, G. Venkatesh, J. Pearce, and
D. Marr, “Fine-Grained Accelerators for Sparse Machine
Learning Workloads,” Asia and South Pacific Design
Automation Conf. (ASP-DAC), 2017.

[34] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E.
Leiserson, “Parallel Sparse Matrix-Vector and
Matrix-Transpose-Vector Multiplication Using Compressed
Sparse Blocks,” Int’l Symp. on Parallelism in Algorithms and
Architectures, 2009.

[35] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo,
T. Chen, and Y. Chen, “Cambricon-x: An Accelerator for
Sparse Neural Networks,” Int’l Symp. on Microarchitecture
(MICRO), 2016.

[36] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng,
C. Chakrabarti, H.-S. Kim, D. Blaauw, T. Mudge, and
R. Dreslinski, “OuterSPACE: An Outer Product Based Sparse
Matrix Multiplication Accelerator,” Int’l Symp. on
High-Performance Computer Architecture (HPCA), 2018.

[37] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt,
“A High Memory Bandwidth FPGA Accelerator for Sparse
Matrix-Vector Multiplication,” IEEE Symp. on Field
Programmable Custom Computing Machines (FCCM), 2014.

[38] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
et al., “The gem5 Simulator,” ACM SIGARCH Computer
Architecture News, 2011.

[39] D. Lockhart, G. Zibrat, and C. Batten, “PyMTL: A Unified
Framework for Vertically Integrated Computer Architecture
Research,” Int’l Symp. on Microarchitecture (MICRO), 2014.

[40] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“CACTI 6.0: A Tool to Model Large Caches,” HP laboratories,
2009.

[41] A. Shilov., “JEDEC Publishes HBM2 Specification.”
http://www.anandtech.com/show/9969/jedec-publisheshbm2-
specification, 2016.

[42] I. S. Duff, M. A. Heroux, and R. Pozo, “An Overview of the
Sparse Basic Linear Algebra Subprograms: The New Standard
from the BLAS Technical Forum,” ACM Trans. on
Mathematical Software (TOMS), 2002.

[43] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “McPAT: An Integrated Power, Area, and
Timing Modeling Framework for Multicore and Manycore
Architectures,” Int’l Symp. on Microarchitecture (MICRO),
2009.

[44] J. Li, Y. Ma, and R. Vuduc, “ParTI! : A Parallel Tensor
Infrastructure for multicore CPUs and GPUs,” 2018.

[45] Y. Ma, J. Li, X. Wu, C. Yan, J. Sun, and R. Vuduc,
“Optimizing Sparse Tensor Times Matrix on GPUs,” Journal of
Parallel and Distributed Computing, 2019.

[46] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi,
“CuSPARSE Library,” GPU Technology Conference, 2010.

[47] “28 nm lithography process.”
https://en.wikichip.org/wiki/28_nm_lithography_process.

[48] “65 nm lithography process.”
https://en.wikichip.org/wiki/65_nm_lithography_process.

[49] T. A. Davis and Y. Hu, “The University of Florida Sparse
Matrix Collection,” ACM Trans. on Mathematical Software

(TOMS), 2011.

[50] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and
G. Karypis, “The Formidable Repository of Open Sparse
Tensors and Tools.” http://frostt.io/tensors/, 2017.

[51] S. Han, J. Pool, J. Tran, and W. Dally, “Learning Both Weights
and Connections for Efficient Neural Network,” Advances in
Neural Information Processing Systems, 2015.

[52] S. Williams, A. Waterman, and D. Patterson, “Roofline: An
Insightful Visual Performance Model for Multicore
Architectures,” Commun. ACM, 2009.

[53] B. Liu, C. Wen, A. D. Sarwate, and M. M. Dehnavi, “A Unified
Optimization Approach for Sparse Tensor Operations on GPUs,”
Int’l Conf. on Cluster Computing (CLUSTER), 2017.

[54] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally, “EIE: Efficient Inference Engine on
Compressed Deep Neural Network,” Int’l Symp. on Computer
Architecture (ISCA), 2016.

[55] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe,
“The Tensor Algebra Compiler,” Intl’l Conf. on Object-Oriented
Programming, Systems, Languages, and Applications, 2017.

[56] F. Kjolstad, P. Ahrens, S. Kamil, and S. Amarasinghe, “Sparse
Tensor Algebra Optimizations with Workspaces,” arXiv preprint
arXiv:1802.10574, 2018.

[57] M. Baskaran, T. Henretty, B. Pradelle, M. H. Langston,
D. Bruns-Smith, J. Ezick, and R. Lethin, “Memory-Efficient
Parallel Tensor Decompositions,” IEEE High Performance
Extreme Computing Conference (HPEC), 2017.

[58] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago,
A. Jaleel, E. Solomonik, J. Emer, and C. W. Fletcher,
“ExTensor: An Accelerator for Sparse Tensor Algebra,” Int’l
Symp. on Microarchitecture (MICRO), 2019.

[59] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou,
L. Li, T. Chen, and Y. Chen, “Cambricon-S: Addressing
Irregularity in Sparse Neural Networks through A Cooperative
Software/Hardware Approach,” Int’l Symp. on
Microarchitecture (MICRO), 2018.

[60] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E.
Jerger, and A. Moshovos, “Cnvlutin: Ineffectual-Neuron-Free
Deep Neural Network Computing,” ACM SIGARCH Computer
Architecture News, 2016.

[61] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN:
An Accelerator for Compressed-Sparse Convolutional Neural
Networks,” Int’l Symp. on Computer Architecture (ISCA), 2017.

[62] A. Gondimalla, N. Chesnut, M. Thottethodi, and
T. Vijaykumar, “SparTen: A Sparse Tensor Accelerator for
Convolutional Neural Networks,” Int’l Symp. on
Microarchitecture (MICRO), 2019.

[63] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle,
P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau,
J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati,
W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu,
R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie,
M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham,
J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,
E. Wilcox, and D. H. Yoon, “In-Datacenter Performance
Analysis of a Tensor Processing Unit,” Int’l Symp. on Computer
Architecture (ISCA), 2017.

[64] L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, “An
Efficient Hardware Accelerator for Sparse Convolutional Neural
Networks on FPGAs,” IEEE Symp. on Field Programmable
Custom Computing Machines (FCCM), 2019.

[65] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo,
S. Yao, Y. Wang, et al., “ESE: Efficient Speech Recognition
Engine with Sparse LSTM on FPGA,” Int’l Symp. on
Field-Programmable Gate Arrays (FPGA), 2017.

http://www.anandtech.com/show/9969/jedec-publisheshbm2-specification
http://www.anandtech.com/show/9969/jedec-publisheshbm2-specification
https://en.wikichip.org/wiki/28_nm_lithography_process
https://en.wikichip.org/wiki/65_nm_lithography_process
http://frostt.io/tensors/

	Introduction
	Background
	Tensor Notations
	MTTKRP
	TTMc
	Matrix-Matrix Multiplication
	Matrix-Vector Multiplication

	Compute Pattern
	Sparse Formats
	Tensaurus Architecture
	Implementation Details of Tensaurus
	Implementation of SF3 Compute Pattern
	Tensor Load Unit (TLU)
	Matrix Load Unit (MLU)
	Scratchpad Memories
	Compute PEs
	Matrix Store Unit (MSU)

	Experimental Setup
	Evaluation
	Roofline Evaluation
	Performance Evaluation
	Energy Evaluation

	Related Work
	Conclusion
	References

