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Tensor algebra lives at the heart of big data applications. Where classical machine learning

techniques such as embedding generation in recommender systems, dimensionality reduction and

latent Dirichlet allocation make use of multi-dimensional tensor factorizations, deep learning tech-

niques such as convolutional neural networks, recurrent neural networks and graph learning use

tensor computations primarily in the form of matrix-matrix and matrix-vector multiplications. The

tensor computations often used in many of these fields operate on sparse data where most of the

elements are zeros. Traditionally, tensor computations have been performed on CPUs and GPUs,

both of which have low energy-efficiency as they allocate excessive hardware resources to flexibly

support various workloads. However, with the end of Moore’s law and Dennard scaling, one can

no longer expect more and faster transistors for the same dollar and power budget. This has led

to an ever-growing need for energy-efficient and high-performance hardware that has resulted in a

recent surge of interest in application-specific, domain-specific and behavior-specific accelerators,

which sacrifice generality for higher performance and energy efficiency.

In this dissertation, I explore hardware specialization for tensor computations by building pro-

grammable accelerators. A central theme in my dissertation is determining common spatial op-

timizations, computation and memory access patterns, and building efficient storage formats and

hardware for tensor computations. First, I present T2S-Tensor, a language and compilation frame-

work for productively generating high-performance systolic arrays for dense tensor computations.

Then I present a versatile accelerator, Tensaurus, that can accelerate both dense and mixed sparse-

dense tensor computations. Here, I also introduce a new sparse storage format that allows access-

ing sparse data in a vectorized and streaming fashion and thus achieves high memory bandwidth

utilization for sparse tensor kernels. Finally, I present a novel sparse-sparse matrix multiplication

accelerator, MatRaptor, designed using a row-wise product approach. I also show how these differ-



ent hardware specialization techniques outperform CPUs, GPUs and state-of-the-art accelerators

in both energy efficiency and performance.
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CHAPTER 1
INTRODUCTION

Data-intensive computing significantly impacts the world economy, from warehouse comput-

ing to personal mobile devices and Internet of Things (IoT). In this era of data explosion, machine

learning (ML) techniques such as social networks, recommendation systems, computational ad-

vertising, and image recognition have become pervasive tools in emerging large-scale commercial

applications. Tensor algebra lives at the heart of many of these big data applications. For example,

multi-dimensional tensor factorizations are extensively deployed in classical ML techniques such

as embedding generation in recommender systems, dimensionality reduction, and latent dirichlet

allocation [SDLF+17, CMDL+15, VT02, PFS12]. More recent deep learning techniques such as

convolutional neural networks (CNNs), recurrent neural networks (RNNs), and graph learning also

make use of tensor computations primarily in the form of matrix-matrix and matrix-vector mul-

tiplications [CWV+14, VAG17, JYP+17]. The tensor computations in these fields often operate

on sparse data where most of the elements are zeros. While the underlying computations in all

these fields are some basic tensor computations, the sparsity of the tensors can vary significantly

among different fields. For example, the graphs in graph learning applications such as Amazon

co-purchase network consist of 400K nodes and 3.2M edges forming an adjacency matrix of 400K

× 400K with a density of 0.002%. This is in contrast to sparse deep learning applications such as

sparse convolutional neural networks where the weights and activations have a density of 20-40%

and the graphs in Internet and social media where the density is in the order of 10−6%. At the

same time there are many other ML algorithms that mainly operate on dense tensors.

Traditionally, tensor computations have been performed on CPUs and GPUs [CHW+13,ESA+06,

VSM11], both of which have low energy efficiency as they allocate excessive hardware resources

to flexibly support various workloads. For many years, general-purpose processor architectures

took advantage of Dennard scaling and Moore’s Law. As per Moore’s Law [M+65], new process

technologies reduced feature size of the transistors by a factor of two every 18 months to two

years for roughly the same dollar budget. This effectively resulted in exponentially more transis-

tors on a chip for the same cost. Similarly, Dennard Scaling predicted a constant-factor scaling

down of feature sizes, voltages, and gate capacitance every 18 months to two years, which led to

faster transistors under roughly the same power budget [DGR+74]. Because of Moore’s Law and

Dennard Scaling, applications were transparently becoming faster and more energy efficient with-
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out any hardware/software specialization. However today, because of the end of Dennard scaling

and an apparent slowing down of Moore’s Law, one cannot get more and better transistors. This

has caused a recent surge of interest in application- and domain-specific accelerators, which trade

generality for higher performance and energy efficiency.

1.1 The Kernel-Sparsity Spectrum

Many real-world tensors are sparse and there are different types of tensor kernels. Fig. 1.1

shows where different application domains lie in the kernel-sparsity space. The x-axis of this

spectrum represents density of the tensors in the log domain; The y-axis consists of three repre-

sentative tensor kernels: matricized tensor times Khatri-Rao product (MTTKRP), matrix-matrix

multiplication (MM) and matrix-vector multiplication (MV). As the figure shows, for the same

tensor kernel the density of the tensor can vary significantly among the application domains. The

existing works on tensor hardware either focus on a single kernel or a single application domain

while making assumptions about the sparsity of the tensors [FOS+14,HLM+16,HKM+17,CES16,

ZDZ+16, JYP+17]. The primary reason behind this is that different application domains have dif-

ferent requirements. The applications that operate on very sparse tensors require hardware that is

optimized for off-chip and irregular memory accesses, while the applications consisting of dense

tensor computations require high on-chip compute resources. I tackle the first challenge by de-

signing sparse tensor formats, which enable efficient off-chip memory accesses for tensors with

varying range of sparsity; and the second challenge by designing designing regular systolic arrays

with SIMD vectorization to efficiently utilize the on-chip compute resources.

1.1.1 Challenges in Dense Tensor Acceleration

There has been a rich body of research on accelerating dense tensor computations. H.T. Kung

and Charles E. Leiserson in their classic 1979 book on Systolic array for VLSI described how most

of dense computations lie under the class of systolic algorithms and gave a mathematical founda-

tion of designing systolic arrays for such algorithms [KL79]. Even after four decades, systolic

arrays are still considered one of the most efficient ways of performing dense tensor computa-

tions. Many state-of-the-art dense tensor accelerators such as Google TPU [JYP+17] and NVIDIA

Tensor Core [MDCL+18] are systolic arrays. The main challenge in the domain of dense tensor
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acceleration, however, is productivity. While the theories behind systolic algorithms and architec-

tures are well understood, building high-performance systolic arrays requires significant efforts in

coding and performance tuning. A recent work by Intel shows that it took around 18 months for in-

dustry experts to design a high-performance dense matrix-matrix multiplication accelerator using

high-level synthesis (HLS) on an FPGA [Ron17a]. The reason behind this is there are numerous

hardware optimizations such as tiling, data buffering, and I/O interfacing that need to be handled,

apart from expressing the algorithm in a systolic manner, in order to get a high-performance design.

These optimizations depend significantly on the amount of available on-chip compute and memory

resources such arithmetic and logic units, registers and random-access memories (RAMs), and on

the off-chip memory bandwidth. Thus, designing a highly-efficient dense tensor accelerator in a

short amount of time still remains a challenge.
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1.1.2 Challenges in Sparse Tensor Acceleration

The challenges faced in sparse tensor acceleration are primarily flexibility and efficiency. Un-

like dense tensor acceleration, where the datasets are always dense and the hardware for a single

tensor kernel such as dense matrix-matrix multiplication can be reused across multiple application

domains (e.g., TPU [JYP+17]), the same sparse tensor kernel requires different hardware accel-

erators for different application domains (e.g., SpMV accelerator by Fowers et al. [FOS+14] for

graphs and ESE by Han et al. [HKM+17] for RNNs, both of which accelerate sparse-dense matrix-

vector multiplication). This is because the density of the tensors involved in different sparse-tensor

application can vary significantly and thus requires different density-dependent hardware and soft-

ware optimizations such as sparse storage formats, tiling strategies and memory read/write vector-

ization. This makes the existing sparse tensor accelerators less flexible as they focus on a single

tensor kernel or a single application domain while making assumptions about the sparsity of ten-

sors involved in the computation. Thus, designing a hardware accelerator that can flexibly support

different sparse tensor kernels with varying ranges of sparsity while being efficient in terms of both

energy and performance is a major challenge in sparse tensor acceleration.

1.2 The Present and Future of Tensor Computations

The Moore’s law and Dennard scaling have slowed down while at the same time data analytics

and machine learning are continuously evolving. Below are some observations and predictions on

how this might change the future of tensor computations.

Tensor computations will continue to gain importance. Today, tensor algebra lives at the

heart of data analytics and machine learning. The primary reason behind this is that most of the

real-world data whether that be the camera images, video recordings, temperature sensor data or

digital circuits come in the form of tensors. Tensors are also a natural way of representing multi-

dimensional vector spaces and thus form the basis of many scientific simulations. Both tensor

algebra and tensor calculus have been thoroughly studied in the literature and thus tensor based

computations are preferred methods in multiple domains. The forms of data that do not have

obvious correspondence with tensors such as text documents, speech data, and graphs are often

represented as tensors using some embedding techniques [MSC+13, MCCD15, GL14]. Today,
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with social media and entertainment industry, humans are significantly relying on machines to

provide recommendations for movies, clothes, food, and other consumer products. In the near

future, machines may be intelligent enough to make decisions for humans, a glimpse of which can

be seen with Amazon Echo Dot, OK Google and Siri.

Software for tensor computations will make significant advancements. The first dense ma-

trix algebra library, basic linear algebra subroutines (BLAS) [bla], was developed in 1979, 25

years after the invention of formula translation language (FORTRAN) and 34 years after John von

Neumann described modern programmable computers. Over the years, several other dense matrix

algebra libraries have been created such as AMD Core Math Library (ACML) [acm], Automat-

ically Tuned Linear Algebra Software (ATLAS) [atl], Intel Math Kernel Library (MKL) [mkl],

and OpenBLAS [ope]. In the 1980s, sparse matrix algebra started garnering interest and the

first sparse linear algebra library, Sparse BLAS [DHP02], was designed. Later Eigen [GJ+10],

CSparse [Dav14], PETSc [BAA+19], OSKI [VDY05] and other sparse matrix algebra libraries

were created. Around the same time researchers realized the power of multi-dimensional tensor

algebra and multiple tensor libraries and toolbox such as TeLa [tel] and Cadabra [Pee07] were

created. Recently, the growth in deep learning, social media, and human machine interactions re-

sulted in a renewed interest in tensor algebra and many tensor computation libraries and languages

such as Tensor Toolbox, GigaTensor [KPHF12], SPLATT [SRSK15], Halide [RKBA+13], Ten-

sorFlow [ABC+16], and TACO [KKC+17] were developed. Many of the recent work on tensor

languages and libraries such as TensorFlow also not only support CPUs and GPUs but also spe-

cialized tensor hardware. As this is just the beginning of the era of machine learning and data

analytics, more languages and libraries will be developed to meet the ever-growing needs of tensor

computations. Further, with the advancements in tensor hardware these languages and libraries

will have specialized backends to target different high-performance tensor hardware.

Tensor hardware will gain increasing importance. With the advent of the modern area of

deep learning in the last decade, significant advancements have been made both in industry and

academia to design energy-efficient and high-performance accelerators for deep learning. Google

Tensor Processing Unit (TPU) [JYP+17], Microsoft Brainwave [CFO+18], and NVIDIA Tensor

Core [MDCL+18] are a few examples of industry efforts while Eyeriss [CES16], ESE [HKM+17],

EIE [HLM+16], SCNN [PRM+17], Cambricon-X [ZDZ+16] and DianNao [CCX+16] are some
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of the efforts made in academia. As deep learning is still in its nascent stage and significant

advancements have to be made, tensor hardware will keep on gaining interest. Similar to deep

learning, tensor factorizations primarily in the form of recommendation systems have also attracted

a great deal of interest in the past few years. This emerging class of applications will require

efficient processing and will create a need for more specialized tensor hardware.

1.3 Dissertation Overview

This dissertation presents hardware accelerators and storage formats for accelerating tensor

computations. It has two thrusts that tackle two major problems in accelerator design for tensor

computations: (1) creating a language and compilation framework for productively designing high-

performance accelerators for dense tensor computations, and (2) building versatile accelerators that

can accelerate dense and mixed sparse tensor computations. The first thrust provides abstractions,

in the form of language primitives, for the computation patterns and spatial optimizations found

in dense tensor computations and generating high-performance designs for reconfigurable spatial

hardware. This allows programmers to design high-performance hardware accelerators for dense

tensor computations in a productive manner. The second thrust extends the domain knowledge

gained from (1) to design compute patterns, algorithms, spatial optimizations, and sparse storage

formats for sparse tensor computations in order to design flexible and efficient hardware for sparse

tensor computations.

Since tensors and tensor computations are the main focus of this dissertation, Chapter 2 presents

an extensive background on tensors, tensor factorizations, applications of tensor factorizations, ma-

trix kernels and their applications. The rest of the dissertation is organized as follows. Chapter 3

presents a language and compilation framework for productively generating high-performance sys-

tolic arrays for dense tensor computations on spatial architectures. Chapter 4 presents a versatile

accelerator that can accelerate both dense and mixed sparse-dense tensor computations. It also pro-

poses a new sparse storage format that allows accessing sparse data in a vectorized and streaming

fashion and thus achieves high memory bandwidth utilization for sparse tensor kernels. Chapter 5

presents a novel sparse-sparse matrix multiplication accelerator designed using a row-wise product

approach. This chapter also proposes a new sparse storage format that has the same benefits of the

sparse storage format in Chapter 4 but also allows using the same format for the output matrix.
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The key contributions of this dissertation are:

• Proposing a concise yet expressive programming abstraction that decouples spatial mapping

from the functional specification of a tensor computation.

• Identifying a set of key spatial optimizations that are essential for creating high-performance

spatial hardware for dense tensor computations.

• Proposing a language and compilation framework to productively generate high-performance

systolic arrays for dense tensor computations.

• Proposing the first hardware accelerator designed for mixed sparse-dense tensor factoriza-

tions. This accelerator is both versatile and adaptable and supports several mixed sparse-

dense matrix operations for a wide range of sparsity.

• Proposing a new sparse storage format, compressed interleaved sparse slice (CISS), which

allows accessing sparse data in vectorized and streaming fashion and thus helps sparse ac-

celerators achieve high memory bandwidth utilization and performance for sparse tensor

kernels.

• Systematically analyzing different dataflows for sparse-sparse matrix multiplication by com-

paring and contrasting them against data reuse and on-chip memory requirements. It also

shows that a row-wise product approach, which has not been explored in the design of

sparse-sparse matrix multiplication accelerators, has the potential to outperform the exist-

ing approaches.

• Proposing C2SR, a new hardware-friendly sparse storage format that allows different parallel

processing engines to access the data in a vectorized and streaming manner leading to high

utilization of the available memory bandwidth. This format solves the same challenges as in

CISS format; however, unlike CISS that can be used only for sparse input matrices but not

sparse output matrices, C2SR can be used for both.
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CHAPTER 2
BACKGROUND ON TENSOR COMPUTATIONS

This chapter provides a background on tensor computations. It first introduces tensor notations

and then describes the most commonly used tensor computations such as tensor factorizations,

matrix-matrix and matrix-vector multiplications.

2.1 Tensor Notations

A tensor is a generalization of a matrix to multiple dimensions. A scalar is a tensor of dimension

zero, a vector is a tensor of dimension one and a matrix is a tensor of dimension two. We denote

tensors with three or more dimensions using capital calligraphic letters (e.g., A), matrices using

boldface capital letters (e.g., A), vectors using boldface letters (e.g., a), and scalars using Greek

letters (e.g. α).

The dimensions of a tensor are also called its modes and colon(:) is used to indicate all the

elements of a mode. Thus a 3-dimensional (3-d) tensor is a tensor with 3 modes. Fibers are

building blocks of tensors. A fiber is the result of holding all but one index constant. For a 3-d

tensor A, its fibers are A(:, j,k), A(i, :,k), and A(i, j, :). Similarly, for a matrix A its rows A(i, :)

and columns A(:, j) are its fibers. A slice of a tensor is the resultant matrix by holding all but two

indices constant. Slices of a 3-d tensor A would be A(i, :, :), A(:, j, :) and A(:, :,k).

2.2 Tensor Factorizations

Tensor factorization has two important applications in machine learning: dimensionality re-

duction as a learning task, and compression of network layers (e.g., convolutional layers) in deep

neural networks.

2.2.1 Recommendation Systems

Matrix and tensor factorization have traditionally been used in recommender systems [SZL+05,

KB06] to produce factor matrices that represent an embedding (e.g., of users and items in user-item

pairs) into the reduced latent space. These factor matrices are then used to predict the relevance
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“score” of the interaction (e.g., between a user and an item) by simply taking the inner prod-

uct of their vectors in the latent feature space. With the emergence of larger and more complex

data sets, tensor decomposition offers several advantages over matrix- and neural network-based

methods. While deep neural networks have produced accurate results in recommendation sys-

tems [ZZS+18,WFFW17], computer vision [S+15,HZRS16], and machine translation [VSP+17],

they are also expensive to train, often requiring large quantities of labeled data, and have lim-

ited interpretability. In these respects, tensor decomposition can provide a faster, yet competitive,

method for producing embedding for recommendation systems. Tensor decomposition also allows

incorporating new data via coupled [BTK+14, DK17] and streaming methods [SHSK18, STF06],

without the expensive re-factorization. It also has the advantage that the decomposed factors are

more interpretable, as they often map easily to existing concepts [HGS14].

2.2.2 Model Compression

A recent study by Facebook [PNB+18] indicates that many important applications in ML: such

as recommendations, computer vision, and language models: will soon see increased model com-

plexity, and that a significant fraction of future demand is expected to come from workload corre-

sponding to deep learning inference. Therefore, reducing their storage and computation cost will

become critical, particularly since many inference workloads will require real-time response, or be

computed on the edge. In convolutional neural networks in particular, convolution contributes to

the bulk of all computation, and compressing this layer (i.e., a 4-D tensor) via tensor decomposi-

tion has already been shown to reduce the required data movement and computation, and improve

the overall efficiency [CWZZ18, DZB+14, LGR+14, TXWW15, JVZ14].

The majority of prior studies have focused on matrix factorization. However, real-world data

is becoming increasingly higher-order, electronic health records have dimensions that are as high

as 85 [LCP+17], and keeping data in tensor form retains the multi-way relationship that may

otherwise be lost when formulated as a matrix [KB06], and consequently, produces more accurate

results [FO17].
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2.3 Canonical Polyadic Decomposition

Canonical Polyadic Decomposition (CPD) is one of the most commonly used tensor factor-

ization techniques and is used in fields such as recommender systems [SKB+12], signal process-

ing [NS10] and psychometrics [CC70]. CPD is an extension of the Singular Value Decomposition

(SVD) to tensors and decomposes a tensor into a summation of F rank-one tensors, where F can

either be the rank of the tensor or some smaller integer if a low-rank approximation is desired. A

rank-one tensor of order n is the outer product of n vectors. Eq. (2.1) shows how a 3-d tensor is

approximated using the outer product of F rank-one tensors.

X (i, j,k)≈
F−1

∑
f=0

A(i, f )B( j, f )C(k, f ) (2.1)

Determining the exact rank of a tensor is NP-hard [Hås90] and we are almost always interested

in F << max(I,J,K) for sparse tensors. When computing the rank-F CPD of a 3-d tensor, we wish

to find factor matrices A ∈RI×F , B ∈RJ×F , and C ∈RK×F where A, B, and C are typically dense

regardless of the sparsity of X .

The method of Alternating Least Squares (ALS) as shown in Algorithm 1 is the most commonly

used algorithm for computing the CPD. The computations in Algorithm 1 at line numbers 2, 5 and
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Algorithm 1 CP-ALS for a mode-3 tensor
Input: X : A 3rd order tensor F: The rank of approximation
Output: CP decomposition A, B, C

1: repeat
2: A(i, f )← ∑

J−1
j=0 ∑

K−1
k=0 X (i, j,k)B( j, f )C(k, f )

3: A← A(BT B−CT C)−1

4: Normalize columns of A
5: B( j, f )← ∑

I−1
i=0 ∑

K−1
k=0 X (i, j,k)A(i, f )C(k, f )

6: B← B(AT A−CT C)−1

7: Normalize columns of B
8: C(k, f )← ∑

I−1
i=0 ∑

J−1
j=0 X (i, j,k)A(i, f )B( j, f )

9: C← C(AT A−BT B)−1

10: Normalize columns of C
11: until no improvement or maximum iterations reached

8 are matricized tensor times Khatri-Rao products (MTTKRP). MTTKRP is thus executed once

per mode per iteration of ALS and is often the computational bottleneck of CPD.

2.4 Tucker Decomposition

The objective of Tucker decomposition is to model a tensor X with a set of orthonormal matri-

ces and a core tensor. The orthonormal matrices are referred to as factor matrices. Eq. (2.2) shows

how a 3-d tensor can be approximated using a core tensor G and the factor matrices A, B and C.

X (i, j,k)≈
Fk−1

∑
fk=0

Fj−1

∑
f j=0

Fi−1

∑
fi=0

G( fi, f j, fk)A(i, fi)B( j, f j)C(k, fk) (2.2)

Several optimization algorithms have been developed to compute Tucker decomposition [DLDMV00a],

[DLDMV00b], however, higher-order orthogonal iterations (HOOI) [DLDMV00b] is the most

popular algorithm. HOOI is an iterative algorithm that cyclically updates each factor matrix and

the core tensor until convergence. Most applications involving tensors perform a low-rank factor-

ization, i.e., max(Fi,Fj,Fk)<< max(I,J,K) for mode-3 tensors.

The computations in Algorithm 2 at line numbers 2, 4 and 6 are tensor times matrix chain

(TTMc). TTMc is thus executed once per mode per iteration of HOOI and is often the computa-

tional bottleneck of Tucker decomposition.
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Algorithm 2 HOOI for a mode-3 tensor
Input: X : A 3rd order tensor FI , FJ , FK: The ranks of approximation
Output: Tucker decomposition G, A, B, C

1: repeat
2: Y0(i, f j, fk)← ∑

J−1
j=0 ∑

K−1
k=0 X (i, j,k)B( j, f j)C(k, fk)

3: A← FI leading left singular vectors in mode-0 unfolding of Y0
4: Y1( fi, j, fk)← ∑

I−1
i=0 ∑

K−1
k=0 X (i, j,k)A(i, fi)C(k, fk)

5: B← FJ leading left singular vectors in mode-1 unfolding of Y1
6: Y2( fi, f j,k)← ∑

I−1
i=0 ∑

J−1
j=0 X (i, j,k)A(i, fi)B( j, f j)

7: C← FK leading left singular vectors in mode-0 unfolding of Y2
8: G( fi, f j, fk)← ∑

K−1
k=0 Y2( fi, f j,k)C(k, fk)

9: until no improvement or maximum iterations reached

2.5 Matricized Tensor Times Khatri-Rao Product (MTTKRP)

MTTKRP is the key computation kernel in the alternating least square (ALS) method, which is

the most popular method for finding the factor matrices in CPD [SDLF+17,KB09]. The computa-

tion for MTTKRP consists of multiplication of a tensor with N−1 factor matrices, where N is the

mode of the tensor, to produce an output matrix. Eq. (2.3) shows the MTTKRP kernel for a 3-d ten-

sor along mode 0 (i), where · denotes multiplication. Since MTTKRP is used for both sparse and

dense tensor factorizations [BHR18], I refer to MTTKRP on sparse tensors as SpMTTKRP and on

dense tensors as DMTTKRP. The input matrices and the output matrix in both SpMTTKRP and

DMTTKRP are dense. Even with very efficient data structures [SRSK15, LSV18], the arithmetic

intensity of SpMTTKRP remains low, making this kernel memory bound [CLSS18].

The Hadamard product, denoted by ◦, is the element-wise multiplication of two matrices with

the same dimensions. It is distributive and can be used to factor out the operand matrices in
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MTTKRP [SRSK15] as shown in Eq. (2.4). Here the Hadamard product operates on two vectors

instead of two matrices. Such factorization reduces the number of multiplications in DMTTKRP

from 2I · J ·K ·F to I · J ·F · (K + 1). Here I, J and K are the sizes of the three dimensions of the

tensor and F is the desired rank for tensor factorization (normally in the order of 10s to 100s).

Eq. (2.4) can be easily generalized to MTTKRP on tensors with more than three dimensions as

shown in Eq. (2.5).

Y(i, f ) =
J−1

∑
j=0

K−1

∑
k=0

A(i, j,k)∗B( j, f )∗C(k, f ) (2.3)

Y(i, :) =
J−1

∑
j=0

B( j, :)◦
(K−1

∑
k=0

A(i, j,k)∗C(k, :)
)

(2.4)

Y(i1, :) = ∑
i2

M2(i2, :)◦ ...◦∑
in

A(i1, ..., in) ·Mn(in, :) (2.5)

Similarly, MTTKRP on sparse tensors with and without operand factoring can be represented

as Eq. (2.6) and (2.7). The reductions in number of operations in the case of SpMTTKRP with

operand factoring are similar to its dense counterpart [SRSK15].

Y(i, f ) = ∑
j ∈ { j | ∃ k st.
A(i, j,k) 6= 0}

∑
k ∈ {k |

A(i, j,k) 6= 0}

A(i, j,k)∗B( j, f )∗C(k, f )
(2.6)

Y(i, :) = ∑
j ∈ { j | ∃ k st.
A(i, j,k) 6= 0}

B( j, :)◦
(

∑
k ∈ {k |

A(i, j,k) 6= 0}

A(i, j,k)∗C(k, :)
)

(2.7)
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2.6 Tensor Times Matrix Chain (TTMc)

TTMc involves a sequence of tensor times matrix operations along each mode, which com-

presses the tensor. The output of TTMc is another tensor compressed for all but one mode. Eq. (2.8)

shows the TTMc kernel for a 3-d tensor along mode 0 (i). Similar to MTTKRP, TTMc is used for

both dense and sparse tensors [CCJ+17,BKK19,CLC18]. Accordingly, I refer to TTMc on sparse

tensors as SpTTMc and on dense tensors as DTTMc. For both SpTTMc and DTTMc, the operand

matrices and output tensor are dense.

The Kronecker product, denoted by ⊗, is the generalization of the vector outer product to

matrices and tensors. It is also distributive and can be used to factor out the operand matrices in

TTMc as shown in Eq. (2.9). Such factorization reduces the number of multiplications in DTTMc

from 2 · I · J ·K ·F1 ·F2 to I · J · (K ·F2 +F1 ·F2). Here F1 and F2 are in the order of 10s to 100s.

Eq. (2.9) can also be easily generalized to tensors with more than three dimensions as shown in

Eq. (2.10).

Y(i, f1, f2) =
J−1

∑
j=0

K−1

∑
k=0

A(i, j,k)∗B( j, f1)∗C(k, f2) (2.8)

Y(i, :, :) =
J−1

∑
j=0

B( j, :)⊗
(K−1

∑
k=0

A(i, j,k)∗C(k, :)
)

(2.9)

Y(i1, :, ..., :) = ∑
i2

M2(i2, :)⊗ ...⊗∑
in

A(i1, ..., in) ·Mn(in, :) (2.10)

Similarly, TTMc on sparse tensor with and without operand factoring can be represented as

Eqs. (2.11) and (2.12) and the reductions in number of operations performed for SpTTMc in the

case of operand factoring are similar to the ones for DTTMc [SK17].

Y(i, f1, f2) = ∑
j ∈ { j | ∃ k st.
A(i, j,k) 6= 0}

∑
k ∈ {k |

A(i, j,k) 6= 0}

A(i, j,k)∗B( j, f1)∗C(k, f2) (2.11)

Y(i, :, :) = ∑
j ∈ { j | ∃ k st.
A(i, j,k) 6= 0}

B( j, :)⊗
(

∑
k ∈ {k |

A(i, j,k) 6= 0}

A(i, j,k)∗C(k, :)
)

(2.12)

16



2.7 Matrix-Matrix Multiplication

Matrix-matrix multiplication multiplies two matrices A and B to produce an output matrix C.

Matrix-matrix multiplication where both A and B are dense is called general matrix-matrix multi-

plication (GEMM); the case where A is sparse and B is dense is called sparse-dense matrix-matrix

multiplication (SpMM); and the case where both A and B are sparse is called generalized sparse

matrix-matrix multiplication or sparse-sparse matrix-matrix multiplication (SpGEMM). GEMM

and SpMM are building blocks of many algorithms such as graph learning [HYL17, KW16] and

CNNs [CWV+14], and SpGEMM is a key kernel in algorithms such as graph contraction [GRS08].

In the literature, researchers have used the term SpMM for both sparse-dense and sparse-sparse ma-

trix multiply; however, for clarity, I will use the term SpMM for sparse-dense, and SpGEMM for

sparse-sparse matrix-matrix multiply. Eqs. (2.13), (2.14) and (2.15) show the computations for

GEMM, SpMM and SpGEMM.

Y(i, f ) =
J−1

∑
j=0

A(i, j)∗B( j, f ) (2.13)

Y(i, f ) = ∑
j ∈ { j |

A(i, j) 6= 0}

A(i, j)∗B( j, f )
(2.14)

Y(i, f ) = ∑
j ∈ { j |

A(i, j) 6= 0}
B( j, f ) 6= 0}

A(i, j)∗B( j, f )
(2.15)

2.7.1 Convolutional Layers as Matrix Multiplication

A CNN is a directed acyclic graph of many computation layers. Each layer of a CNN takes

input data, also known as the input feature map, performs some computations, and outputs an

output feature map. The computational bottleneck of a CNN are the convolutional (CONV) layers,

which perform high dimensional convolution. Eq. (2.16) shows the computation within a single

CONV layer.

O[n][ro][co] = ∑
m,ky,kx

I[m][ro + ky][co + kx]∗W [n][m][ky][kx] (2.16)
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Figure 2.4: Convolution Layer as Matrix-Matrix Multiplication

Here O and I are 3-dimensional tensors for the output feature and input feature maps, respec-

tively, and W is a 4-dimensional tensor for the weights. The computation in CONV layers is easily

mapped to matrix-matrix multiplication as shown in Fig. 2.4 by organizing the weights and input

feature maps as matrices [CPS06].

2.8 Matrix-Vector Multiplication

Matrix-vector multiplication involves multiplication of a matrix with a vector to produce an

output vector. Matrix-vector multiplication involving a dense matrix and a dense vector is known

as general matrix-vector multiplication (GEMV), and a sparse matrix and a dense vector is known

as sparse-dense matrix-vector multiplication (SpMV). GEMV and SpMV are used in applications

such as PageRank [BP98], RNNs, minimal spanning tree, single-source shortest path and ML

algorithms such as support vector machine [NMM15] and text analytics [MNV+17]. Eq. (2.17)

and (2.18) show the computations for GEMV and SpMV.
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y(i) =
J−1

∑
j=0

A(i, j)∗b( j) (2.17)

y(i) = ∑
j ∈ { j |

A(i, j) 6= 0}

A(i, j)∗b( j)
(2.18)
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CHAPTER 3
T2S-TENSOR: PRODUCTIVELY GENERATING

HIGH-PERFORMANCE SPATIAL HARDWARE FOR
DENSE TENSOR COMPUTATIONS

This chapter explores hardware acceleration of dense tensor computations on spatial hardware

such as FPGAs and CGRAs. T2S-Tensor provides a language and compilation framework for

productively generating high-performance systolic arrays for dense tensor kernels on spatial ar-

chitectures. T2S-Tensor decouples a functional specification from a spatial mapping, allowing

programmers to quickly explore various spatial optimizations for the same function. The actual

implementation of these optimizations is left to a compiler. Thus, productivity and performance

are achieved at the same time.

3.1 Introduction

High-performance computing (HPC) on spatial architectures tends to be limited by very low

design productivity — it is not unusual for industry experts to spend several months or even more

than a year to deliver one seemingly simple kernel with good quality of results (QoRs). While HPC

programming is presumably challenging on any architecture including CPUs/GPUs, it is especially

painful on spatial architectures like field-programmable gate arrays (FPGAs) due to their much

longer compile time and primitive debugging support [Ron17b]. In addition, FPGA designs often

require construction of specialized user-managed on-chip memory hierarchy, which significantly

increases the programming complexity. Coarse-grain reconfigurable architectures (CGRAs) have

been proposed to address the slow compilation problem, but how to efficiently program CGRAs

remains an open question.

To address these long-standing challenges, I propose a novel programming system consisting

of a language and compiler, named T2S(Temporal To Spatial)-Tensor, for productively generat-

ing high-performance spatial hardware for dense tensor computations. I observe that a dense

tensor computation suitable for a spatial architecture is usually a dataflow function, and a high-

performance spatial design partitions the computation into many sub-computations. These sub-

computations are distributed over the spatial architecture, and are connected with channels, i.e.

FIFOs. They run in parallel, and are individually optimized by a series of loop and data transfor-
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mations. Based on this observation, T2S-Tensor enables programmers to describe a tensor com-

putation in a functional notation, followed by a spatial mapping that describes compute partition

and loop and data transformation optimizations. A compiler then composes these optimizations

and synthesizes them to run on a spatial architecture. Thus, T2S-Tensor allows programmers to

succinctly specify different optimizations and leave the actual implementation of the optimizations

to the compiler.

Well-known dense tensor kernels include, for example, general matrix multiply (GEMM), ten-

sor times matrix (TTM), matricized tensor times khatri-rao product (MTTKRP), and tensor times

matrix-chain (TTMc) as described in Chapter 2. These dense tensor kernels have regular memory

access patterns and high parallelism, making them a good match for spatial architectures. Yet how

to productively accelerate the tensor kernels on spatial architectures for high performance remains

a challenge. First, tensors often have many dimensions and a tensor kernel can involve many ten-

sors. Second, every tensor kernel has many possible designs. Implementing any design efficiently

on spatial hardware like FPGAs usually takes significant engineering effort.

In this chapter, I show that T2S-Tensor enables dense tensor kernels to be succinctly expressed

and effectively optimized.

The major technical contributions of this chapter are as follows:

• I propose a concise yet expressive programming abstraction that decouples a spatial mapping

from the functional specification of a dense tensor computation. The spatial mapping can

direct the compiler to realize many sophisticated optimizations, achieving productivity and

performance at the same time.

• I identify a set of key compiler optimizations that are essential for creating high-performance

spatial hardware for dense tensor computations, and implement them in a comprehensive

compilation framework. The compiler further provides composability of these optimiza-

tions, where various combinations of transformations can be applied and the compiler auto-

matically generates the correct low-level code.

• I demonstrate the efficacy of T2S-Tensor approach on an Arria-10 FPGA as well as a research

CGRA by generating OpenCL and assembly code, respectively for the two architectures.

The GEMM implementations using T2S-Tensor achieve 88% and 92% of the performance

achieved by codes that were manually written, highly optimized, and extensively tuned by
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experts, with only around 3% of engineering time (two weeks vs. 18 months on the FPGA,

and three days vs. three months on the CGRA, respectively). The T2S-Tensor GEMM

implementation on the Arria-10 FPGA is also 76% faster than a (tuned) NDRange-style

OpenCL implementation [Inta].

• Using this language, dense tensor factorization kernels, MTTKRP, TTM, and TTMc were

also implemented in a productive and high-performance manner, and for the first time on

spatial architectures.

The rest of the chapter is organized as follows: Section 3.2 gives a brief overview of the pro-

gramming model; in Section 3.3 I illustrate the spatial optimizations in this system with GEMM as

a working example; the compiler flow and optimizations are described in Section 3.4, followed by

experimental results in Section 3.5, and related work in Section 3.6. Finally, Section 3.7 concludes

this chapter.

3.2 T2S-Tensor: Overview of the Programming Model

A T2S-Tensor program is a specification embedded in C++. It consists of two parts: a temporal

definition and a spatial mapping. The former defines a tensor computation functionally, while the

latter specifies how to map the computation to a spatial architecture. In this chapter, I describe

the programming abstraction with small intuitive examples to facilitate understanding. The same

principle can be applied to construct very sophisticated spatial designs.

Fig. 3.1(a) shows a trivial computation that computes a function B with an input vector A. To

map it to a spatial architecture, I isolate two functions: A_loader for loading the input values and

B_unloader for saving the computed values from function B. This is called compute partition,

which leads to a spatial layout shown in Fig. 3.1(b).

A corresponding T2S-Tensor specification is shown in Fig. 3.1(c). Lines 1-4 are the tempo-

ral definition expressing the original computation, where A is a one-dimensional single-precision

floating-point vector, i is a variable, and B is a function that is to be run on the device. The upper

loop bound of 100 is set upon execution, which is not shown.

Lines 5-7 are the spatial mapping. A_loader and B_unloader are the two new functions on

the device, isolated out of function B as a producer of the input values in A and a consumer of the

22



computed values in B, respectively. A more detailed intermediate representation (IR) after compute

partition is shown in Fig. 3.1(d), where RCH and WCH are primitives of reading and writing a channel.

All the functions have exactly the same loop structure. However, function A_loader does nothing

but loads the values of A and sends them to a channel, channel1. Function B reads data from

channel1, performs computation, and sends the results to channel2. Function B_unloader reads

data from channel2, and stores it into memory.

The compute partition maintains the semantics of the original computation. Its purpose is to

partition a computation into sub-computations, which in turn become accessible to optimizations

and can be specialized individually (Section 3.4). For example, in the middle box of Fig. 3.1(d),

the compiler finds that the loop variable i is no longer used, and all the inputs are from channel1.

Therefore, the compiler may automatically replace the loop with an infinite loop, while(true),

and the loop automatically executes (or stops) if data are (not) available in channel1. This opti-

mization is called loop infinitization.

Assuming a temporal definition, usually including simple math equations, is correctly specified

by the programmer, the compiler checks the spatial directives to ensure that they do not violate

the semantics of the temporal definition. This provides a correctness guarantee of the generated

hardware, and composability of the directives.

T2S-Tensor is built on Halide [RKBA+13], a domain-specific language (DSL) for image pro-

cessing on CPUs and GPUs. A key strength of Halide is to decouple a functional specification

from optimizations. Many important loop-nest optimizations (e.g., loop reordering and tiling) can

be easily specified in Halide. T2S-Tensor extends Halide to spatial architectures with the following

optimizations:

• Spatial layout: compute partition.

• Loop transformations: loop unrolling1, flattening, perfectization, infinitization, and removal.

• Data transformations: data forwarding, scattering, gathering, and vectorization.

• Data caching: single/double buffer insertion.

• Control: overlapping draining and filling of a pipeline, and drain signal generation.

1Different from unrolling on CPUs/GPUs, unrolling a loop of n iterations on a spatial architecture will create n
Processing Elements (PEs) in hardware, each for an iteration, and input/output channels will also be unrolled (Sec-
tion 3.4).
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Function A_loader  
 for i = 0 .. 100
   x = load A(i)
   WCH(channel1, x) 

channel1

1  ImageParam A(Float(32), 1);
2  Var                i;
3  Func              B(Place::Device);
4  B(i) = A(i) * 2;

5  Func A_loader(Place::Device), B_unloader(Place::Device);
6  B.isolate_producer(A, A_loader)
7    .isolate_consumer(B, B_unloader);

T
em

poral 
definition

  Function B
for i = 0 .. 100 //i.e. 0≤i<100
  B(i) = A(i) * 2

Spatial 
m

apping

Function B
 for i = 0 .. 100 while(true)
    x = RCH(channel1)
    WCH(channel2, x * 2) 

 Function B_unloader
 for i = 0 .. 100
    x = RCH(channel2)
    store x to B(i)

channel2

B_unloaderA_loader B
channel1 channel2

(c) T2S specification

(a) Computation (b) Spatial Layout

(d) IR after compute partition

Figure 3.1: An Illustration of T2S-Tensor Approach

3.3 T2S-Tensor: High-Level Illustration of the Optimizations

This section introduces the spatial optimizations that can be specified with T2S-Tensor, using a

high-performance FPGA-targeted GEMM design as the driving example. For ease of understand-

ing, the optimizations are illustrated at a high level, and the compiler details are left to Section 3.4.

As the optimizations can be freely composed together, one may use these optimizations to specify

many different designs for the same workload. The design illustrated here is thus only one of the

possibilities. In general, programmers can start from a simple design with no or few optimizations,

and gradually evolve it into more complicated designs by specifying more optimizations.

24



3.3.1 Temporal Definition

Consider matrix multiplication C = A * B. A temporal definition for this is shown in Fig. 3.2(a).

Here A and B are single-precision floating-point matrices, i and j are variables, and k is a reduction

domain of [0, K * KK * KKK) (Lines 1-3). In this example, I, II, III, J, JJ, JJJ, K,

KK, and KKK represent some compile-time constants, and the input matrices are assumed to have a

row-major storage format.

The output function C includes an initial definition (Line 5), and an update definition (Line

6) referred to as C.update(). From now on, this section will focus on transforming the update

definition for high performance. For convenience, function C will refer to the update definition of

function C, unless stated otherwise.

With the temporal definition, one gets a familiar three-level loop nest as shown in the left

side of Fig. 3.2(b). This initial implementation does not exploit data locality, which is critical for

achieving high performance. To optimize for locality, Lines 9-10 tile every loop twice to generate

a nine-level loop nest, as shown in the right side of Fig. 3.2(b).

3.3.2 Evolving the Initial Specification into a High-Performance Spatial Design

Now let us see how the basic tiled loop nest (the right side of Fig. 3.2(b)), which has no notion

of “space” at all, can be transformed to a high-performance spatial design. Fig. 3.3 abstractly

visualizes the major spatial optimizations, with the details to be described in the next section.

Compute partition (Fig. 3.3(a)): It isolates from function C the loading of matrix A into another

function named A_feeder. These two functions are automatically connected via a channel after

the isolation.

Loop unrolling (Fig. 3.3(b)): It unrolls loops ii and jj of function C. This results in an II × JJ

array of PEs for function C. The input channel from A_feeder is also replicated accordingly.

Data forwarding (Fig. 3.3(c)): A(_i, _k) can be shared when multiplied with B(_k, _j),

B(_k, _j + 1), etc. to compute C(_i, _j), C(_i, _j + 1), etc. To minimize redundant

memory accesses, let A_feeder send the data of matrix A to the boundary C PEs (jj = 0), which

receive and forward the data to their neighbor PEs in jj direction. The neighbors receive and
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1   ImageParam A(Float(32), 2), B(Float(32), 2);

2   Var                i, j;

3   RDom           k(0, K * KK * KKK);

4   Func              C;

5   C(i, j)   = 0;

6   C(i, j) += A(i, k) * B(k, j);

7   Var ii, jj, iii, jjj;

8   RDom kk, kkk;

9   C.update().tile(k, j, i, kk, jj, ii, KK * KKK, JJ * JJJ, II * III)

10                  .tile(kk, jj, ii, kkk, jjj, iii, KKK, JJJ, III);

(a) Temporal definition
for i = 0..I 
  for j = 0..J
    for k = 0..K
      for ii = 0..II
        for jj = 0..JJ
          for kk = 0..KK
            for iii = 0..III
              for jjj = 0..JJJ
                for kkk = 0..KKK
                  _i = i*II*III + ii*III + iii
                  _j = j*JJ*JJJ + jj*JJJ + jjj
                  _k = k*KK*KKK + kk*KKK + kkk
                  C(_i, _j) += A(_i, _k) * B(_k, _j)

for i = 0 .. I * II * III 
   for j = 0 .. J * JJ * JJJ
      for k = 0 .. K * KK * KKK
            C(i, j) += A(i, k) * B(k, j)

tiling

(b) Function C before and after tiling

Figure 3.2: Temporal Definition of Matrix-Matrix Multiply, Including Tiling

forward the data to their own neighbors in jj direction, and so on. This effectively allows the jj

loop in A_feeder to be removed, reducing the total off-chip accesses of matrix A by JJ times.

Buffering (Fig. 3.3(d)): It further isolates the accesses of matrix A from A_feeder to another

function A_loader. To further minimize redundant memory accesses, the jjj loop in A_loader

can be removed, because it does not appear in the subscripts of the reference to matrix A. Such a

loop is called a reuse loop. This further reduces the total accesses of matrix A by JJJ times.

However, because A_loader sends less data to its consumer after the loop removal, the data

stream produced is not what is expected by the consumer. To restore the correct data stream, a (dou-

ble) buffer is inserted in the consumer, A_feeder, at an appropriate loop level so that A_feeder

accepts the data from A_loader, stores the data in an on-chip buffer, and sends the buffered data
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(f) Gathering
C.update().isolate_consumer(C, C_drainer)

C_drainer.isolate_consumer(C, C_collector)

C_collector.isolate_consumer(C, C_unloader)

C_drainer.unroll(jj, ii, Hoist).gather(C, {0, -1})

C_collector.unroll(jj, Hoist).gather(C, {-1})

(e) Scattering
A_feeder.unroll(ii, Hoist)

.scatter(A, {1})

(d) Loop removal and data buffering
A_loader.remove(jjj, jj)

A_feeder.buffer(ii, Buffer::Double)

C
_

d
rain

er

C_collector

(a) Compute Partition
C.update().isolate_producer(A, A_feeder)

A_feeder.isolate_producer (A, A_loader)

CA_loader A_feeder

(b) Unrolling
C.update().unroll(jj, ii,  Hoist)

ii

jj

(c) Forwarding
C.update().forward(A_feeder,{1, 0})   

Buffer

C_unloader

C_collector

Device 

memory

Host

_B serializer

_A serializer

_C deserializer

_A loader

_B loader

C_unloader

A_feeder

Matrix

C

Matrix

B

Matrix

A

Matrix

C

Matrix

B

Matrix

A

Host

memory

B_feeder

FPGA

KKK

KKK

JJ

Buffer

Rotating registers C_drainer

C

(g) Complete design

Figure 3.3: Illustrating Some Major Optimizations With GEMM as an Example. For Each Optimization, the
Corresponding T2S-Tensor Specification is Also Shown
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       Function A_loader  

  for i, j, k, ii, jj, kk, iii, jjj, kkk

    _i=i*II*III + ii*III + iii

    _k=k*KK*KKK+kk*KKK+kkk

    x=A[_i][_k]

    WCH(chALoader, x)

         Function A_feeder

   for i, j, k, ii

     float buffer[KK][III][KKK]

     for kk, iii, kkk

        x = RCH(chALoader)

        buffer[kk][iii][kkk] = x

     for jj, kk, iii, jjj, kkk

       y = buffer[kk][iii][kkk]

       WCH(chAFeeder[ii][0], y)

(a)

(b)
Send data to a boundary C PE

Write to buffer

Read from buffer

Loop removal

Automatically removed due to 

data forwarding along jj 

direction in Fig.3(c)

chALoader

A_loader

chAFeeder[0][0]

chAFeeder[1][0]

A
_
fe

ed
e
r

Figure 3.4: Loop Removal and Buffer Insertion

for JJJ times to C in the right order. This restores the correct dataflow relationship that was broken

by loop removal. Fig. 3.4 shows the IR after loop removal in A_loader and buffer insertion in

A_feeder.

The loop level in a consumer at which the buffer is inserted must enclose the outermost loop

that is removed in the producer but not in the consumer. In case of A_loader→ A_feeder, this

loop is ii and hence a buffer is inserted at loop level ii in A_feeder.

How about removing loop j from A_loader, which is also a reuse loop? That will further

reduce the total accesses of matrix A by J times. This is feasible with a bigger on-chip buffer.

However, in this example I assume that loop j is not removed due to insufficient on-chip buffering.

Data scattering (Fig. 3.3(e)): A single A_feeder transferring data to all the boundary PEs of C

will not scale for bigger FPGAs. Unroll loop ii in A_feeder such that every A_feeder PE feeds

a boundary C PE (jj = 0). The first A_feeder PE keeps the data needed by the first boundary

PE of C, and streams the rest of the data to the next A_feeder PE, which works similarly. Fig. 3.8

shows the IR and the corresponding dataflow for data scattering.

Data gathering (Fig. 3.3(f)): Directly writing the results to the memory from each of the C PEs

requires a large cross-bar, which can impact timing. To avoid this, I isolate from C the consumer of
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the computed C values to a function, C_drainer. Then I isolate from C_drainer the consumer of

the computed C values to another function, C_collector. I unroll C_drainer into a 2-dimensional

array of PEs, each accepting the results of a C PE. Each column of drainer PEs relays the results

upward. I unroll C_collector into a 1-dimensional array of PEs, each reading the data from a

column of drainer PEs, and merging them with the data from its right, and then sending the results

to its left.

Data vectorization is not illustrated, but is important for performance. That is, I load matrix A

in vectors of data, vectorize related channels and operations, and save the results in vectors as well.

For the GEMM example, load vectorization can be specified by C.update().vload(A) before

compute partition so that after partition, all the isolated functions are automatically vectorized;

finally, store vectorization can be specified by C_collector.vstore(C).

Besides the optimizations that can be specified, there are optimizations that are automatically

done by the compiler. For example, after flattening a loop nest into a single loop, the loop may be

pipelined efficiently, and hence the T2S-Tensor compiler automatically flattens nested loops.

The optimizations can also be specified to compose some other optimizations, for example,

data serialization and de-serialization. In GEMM, matrix A is not visited sequentially (one can

determine this from the tiled loops in Fig. 3.2(b)). To maximize the usage of memory bandwidth,

I isolate from A_loader another function A_serializer. Unlike all the functions seen so far

that are on the device, A_serializer can be declared to run on the host. A_serializer reads

matrix A once, and sends the values via a memory channel to A_loader that is on the device.

The memory channel is a virtual FIFO that the T2S-Tensor system automatically constructs with

the host and device memory. This enables A_loader to visit the device memory completely se-

quentially. Similarly, C_unloader can send the results using a memory channel to a new function

C_deserializer on the host that stores the results into the host memory in the right order (i.e.,

data de-serialization).

So far this section only describes optimizations for matrix A. Similar optimizations can be

applied to matrix B to get the complete design shown in Fig. 3.3(g).
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C(j, i) = 0.0f;

C(j, i) += A(k, i) * B(j, k);

C.tile(j, i, jj, ii, JJ, II).tile(jj, ii, jjj, iii, JJJ, III);

C.update(0).tile(k, j, i, kk, jj, ii, KK, JJ, II).tile(kk, jj, ii, kkk, jjj, iii, KKK, JJJ, III);

C.update(0).isolate_producer_chain(A, A_serializer, A_loader, A_feeder)

.isolate_producer_chain(B, B_serializer, B_loader, B_feeder)

.isolate_consumer_chain(C, C_drainer, C_collector, C_unloader, C_deserializer);

A_serializer.sread().swrite();

B_serializer.sread().swrite();

C.update(0).vread({A,B});

C.update(0).unroll(ii)

.unroll(jj)

C.update(0).forward(A_feeder, { 0, 1 })

.forward(B_feeder, { 1, 0 });

A_serializer.remove(jjj, jj, j);

A_loader.remove(jjj, jj);

A_feeder.buffer(ii, true).unroll(ii);

B_serializer.remove(iii, ii, i);

B_loader.remove(iii, ii);

B_feeder.buffer(k, true).unroll(jj);

A_feeder.scatter(A, {1});

B_feeder.scatter(B, {1});

C_drainer.unroll(ii).unroll(jj).gather(C, jjj, { 1, 0 });

C_collector.unroll(jj).gather(C_drainer, jjj, { 1 });

Figure 3.5: T2S-Tensor Code for High-Performance SGEMM Design

Temporal definition
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Reactive compilation

Inter-tile optimizations

Inter-tile communication,
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I/O extension

Loop perfectization,

Loop flattening, Loop infinitization
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Compute partition, Loop unrolling, 

vectorization, loop removal, buffer 

insertion, scatter, gather

Code Generation

Figure 3.6: T2S-Tensor Compiler Flow
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3.4 T2S-Tensor: Compiler Flow and Optimizations

T2S-Tensor leverages the Halide compiler [RKBA+13] and extends it to spatial architectures.

Fig. 3.6 shows the overall flow of the T2S-Tensor compiler. The compiler works in two modes:

first in reactive, then proactive mode.

In the reactive mode, the compiler reads a programmer’s specification, which includes a tempo-

ral definition and spatial mapping. The compiler builds an IR according to the temporal definition,

and transforms the IR according to the spatial mapping. The compiler is reactive, since its work is

purely directed by the specification.

After applying user-specified optimizations, the compiler automatically switches into the proac-

tive mode, and performs optimizations transparent to the programmer. Finally, it generates code

for the target architecture.

The following subsections describe the compiler in more detail.

3.4.1 Reactive compilation

The compiler builds up an IR according to the temporal definition. The temporal definition

defines a computation with some dataflow functions, and often, also specifies how to tile or reorder

the loops of the functions for better data locality or reuse.

The compiler then transforms, or equivalently annotates, the IR according to the spatial map-

ping. Typically, the spatial mapping specifies how to partition the computation, which loops to

unroll, which loops to remove, how to manipulate data on the device including buffering, forward-

ing, gathering and scattering, and vectorizing of loads/stores from/to the off-chip device memory.

Compute partition – The compiler copies the IR to a new IR as a producer (or consumer), prunes

the new IR so that it contains only the part of the original tree that generates the input (or consumes

the output) values of the original tree. The compiler creates a channel and substitutes two nodes

in the IRs with the channel, such that the values flow between the two IRs through the channel.

The new IR inherits the annotations of the original IR, which implies that the loop nests the IRs

encode have the same loop structure and are optimized (e.g., tiled) in the same way. This ensures

the values are communicated in the right order over the newly-created channel. If the new IR is

a consumer, reduction loops are automatically removed, as the consumer is supposed to consume

the final results after reduction is done.
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Loop unrolling – The unrolled loops are annotated as unrolled and hoisted to the outermost

levels: all other loops become the body of the unrolled loops. Later in code generation, every

iteration of the unrolled loops is turned into a hardware PE. With loop unrolling, channels in the

IR have to be unrolled as well. Suppose there is a channel ch between a producer and a consumer.

If loop x in the producer is unrolled X times, the channel is split correspondingly into an array of

X number of channels, such that instead of writing to channel ch, the x’th PE writes to the x’th

channel in the new channel array, denoted by ch[x]. The consumer is also changed to read from

ch[x]. More generally, given a pair of producer and consumer, where loops {x,y} are unrolled

in the producer and loops {y,z} are unrolled in the consumer, the compiler unrolls the channel

between them X × Y × Z times (product of the trip counts of the union of the unrolled loops

from both the producer and consumer).

Loop removal and data buffering – Loop removal is usually accompanied by data buffering, as

discussed in Section 3.3. The compiler removes a loop in a producer IR, and inserts a buffer at

a loop level in a consumer IR. The compiler calculates the buffer size with the references of the

data in the body of the loop level in the consumer IR, and change all the references in the body to

refer to the buffer elements. Fig. 3.4 shows the loop removal and buffer insertion for A_loader

and A_feeder, respectively. Here, loops jj,jjj are removed from A_loader and a buffer of size

KK× III×KKK is inserted in A_feeder.

Data forwarding

Data forwarding is also called dependence localization [LVMQ91]. The channels are renamed

so that a producer sends data only to the boundary PEs of its consumer, and every boundary PE

broadcasts the data it receives to the other PEs along a given direction as shown in Fig. 3.7.

Forward 
B

Forward 
A

                  Func C
  for ii, jj (unrolled)
    for i, j, k, kk, iii, jjj, kkk
      ...
     a = RCH(chA[ii][jj ])
     WCH(chA[ii][jj+1], a)
     b = RCH(chB[ii ][jj])
     WCH(chB[ii+1][jj], b)
        = a*b
       ... ii

jj

Forward A

Forward 
B

Figure 3.7: IR for Data Forwarding in C PEs
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Data Scattering

For a PE to scatter data along a direction, the compiler automatically inserts a counting loop

t, counting the total data received by the PE. Depending on the value of t, the received data are

either used by the current PE, or forwarded to the next PE along the scattering direction. Fig. 3.8

shows the IR before and after applying data scattering optimization.

         Function A_feeder

 for ii (unroll)

   for i, j, k

     float buffer[KK][III][KKK]

     for t = 0...(II - ii)

        for kk, iii, kkk        

           x = RCH(chALoader[ii])

           if (t == 0)                  

             buffer[kk][iii][kkk] = x

           else    

             WCH(chALoader[ii+1], x)

     for jj, kk, iii, jjj, kkk

        y = buffer[kk][iii][kkk]

        WCH(chAFeeder[ii][0], y)

chALoader[0]

chALoader[1]

A_loader

First fill the buffer of 

this PE

Then forward data 

to fill the buffers of 

the other PEs below

Counting loop

Body of the unrolled loop 

becomes the code for a 

PE, parameterized by ii

Unrolled loop is moved 

to the outermost level

chAFeeder[0][0]

chAFeeder[1][0]

A
_

fe
ed

e
r (2

 P
E

s)

Figure 3.8: IR Change After Applying Data Scattering Optimization

Data Vectorization Loads and stores can be vectorized to access the device memory in chunks of

multiple contiguous data elements. This reduces the number of memory accesses and improves the

achieved memory bandwidth. Currently, only the data accesses in an innermost loop are allowed

for vectorization. Since the data is communicated via channels, the compiler increases the width

of the channels to match the width of vectorized data, and inserts a load before or a store after

the innermost loop to read/write the data as a vector. All the operations in the innermost loop are

changed to operate on the vector.

Data Gathering Similar to scattering, the compiler inserts a counting loop t at a specified loop

level, and depending on the value of t, a PE decides to accept incoming data from the previous PE

for the same function along the given direction, or from a producer function.

When the counting loop t is the innermost loop, and if it has been specified to vectorize the

incoming data, the compiler does not generate an explicit counting loop, but instead, creates a

small vector for each PE, and a PE writes the data into this vector before sending the vector to

the next PE. This makes the gathering network faster, and eventually allows an entire vector to

be written back to the device memory, reducing the number of memory accesses and improving
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memory bandwidth. This vectorized data gathering is a trade-off as it increases the width of the

channels, which can also result in more resource usage.

Fig. 3.9 shows two gathering networks: one formed by C_drainer PEs, which has an explicit

timing loop, another by C_collector PEs, which has vectorized gathering.

         Func C_drainer
 for ii, jj (unroll)
  for i, j
   for t = 0 ( II - ii – 1 )
    for iii, jjj
      if (t == 0)
        x = RCH(chC[ii][jj])
      else
        x = RCH(chDrainC[ii+1][jj])
      WCH (chDrainC[ii][jj], x)                

         Func C_collector
 for jj (unroll)
   for i, j, ii, iii, jjj
        float out[JJ]
        out = RCH(chCollectC[jj+1])
        x = RCH(chDrainC[0][jj])
        out[jj] = x             
        WCH (chCollectC[jj], out)                

C_collector

C_drainer

C

JJ JJ

Timing 
loop

Gatheri
ng data

A short vector

Merge current PE s data with 
neighbors 

Figure 3.9: IR Change for Data Gathering

3.4.2 Proactive compilation

Usually, a problem is too big to fit on the on-chip memory, and thus has to be partitioned into

tiles, and computed tile by tile, as specified by the programmer. In the proactive mode, the compiler

automatically performs optimizations between tiles and within a tile, and finally generates code for

the target architecture.

Overlapping drain and compute – In general, a systolic array of PEs (like the C PEs in GEMM)

computes one tile of results, drains them, and computes the next tile of results, and so on. It is

desirable to overlap the draining of one tile and the computation of the next tile. The compiler

identifies all the reduction loops and inserts a local buffer right before the outermost reduction

loop. This buffer contains the results for the current tile. The size of the buffer is calculated from
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the memory footprint of the results in the body of the outermost reduction loop. Then the compiler

generates a drain signal and inserts code in the innermost loop to drain and re-initialize one buffer

element every iteration while computing results for next tile at the same time. If the buffer has

unit-stride cyclic access pattern, the buffer can be optimized into a rotating register file. Rotating

registers remove the area overhead due to address calculation. The compiler changes the memory

accesses to the buffer so that a read/write access occur only at the first/last element of the buffer.

Then the compiler inserts code for rotation of the buffer after the access.

Loop perfectization – As many HLS compilers cannot pipeline a non-perfect loop nest efficiently,

it is important to convert an imperfect loop nest into a perfect loop nest. The compiler moves

an operation at an outer loop level into an inner level by predication. When there is more than

one inner loop at the same level, the inner loops will be merged together as a single loop whose

trip count is the sum of their individual trip counts, and the loop variable is used to construct a

finite state mahcine (FSM) that controls the execution among the original inner loops’ operations.

Fig. 3.10 illustrates how an imperfect loop nest by transformed into a perfect loop nest in the

T2S-Tensor compiler.

    Imperfect loop nest
   for i = 0..I
     s0;
     for x = 0...X
       A;
     s1;
     for y = 0...Y
       B;
     s2;               

        Perfectized loop nest
  for i = 0...I
   for xy = 0...X+Y
     x = xy;
     if (xy < X)
       if (xy == 0)  s0;
       A;
       if (xy == X-1) s1; y = 0;
     else if (xy < X+Y)
       B; y++;
       if (y == Y) s2;

Figure 3.10: IR Change for Loop Perfectization

Loop flattening – As HLS compilers usually pipeline the innermost loop only, if the innermost

loop has fewer number of iterations, the startup overhead for the pipeline can significantly degrade

the performance. Hence, it is advisable to flatten a loop nest into a single loop to increase the

number of iterations of the new innermost loop and amortize the startup overhead.

In the T2S-Tensor compilation flow, loop flattening happens automatically after loop perfec-

tization. The compiler merges all the original loops into a single loop whose trip count is the
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multiplication of all the original loops’ trip counts. Then the compiler inserts code to extract the

original loop variables from the flattened loop variable. Fig. 3.11(a,b) show loop flattening where

all loops’ trip counts are powers of two, and Fig. 3.11(c,d) show loop flattening when all the loops’

trip counts are not powers of two. Bit masks and shifts are used to extract the original loop vari-

ables, which are efficient for FPGAs. When an original loop’s trip count is not a power of two, the

flattened loop variable will “jump” to the next power-of-two value when that original loop is done,

as shown in the last statement of Fig. 3.11(d).

So far, the compiler only supports loop flattening for the loops with constant trip counts. This

does not effect the quality of the generated code, since after tiling, all loops but few outermost

loops have constant trip counts.

    Unflattened
  for x = 0..8 
    for y = 0...4
      for z = 0...16
        A           

     Flattened
  for xyz = 0..512
     x = xyz >> 6
     y = (xyz & 63) >>4
     z = (xyz & 15)
     A

    Unflattened
  for x = 0..4
    for y = 0...3
       for z = 0...4
         A       

     Flattened 
  for xyz = 0..64
     x = xyz >> 4
     y = (xyz & 15) >> 2
     z = (xyz & 3)
     A
     if (xyz == 3*4)
       xyz += 4;

(a) (b) (c) (d)

Figure 3.11: IR Change for Loop Flattening

Loop infinitization – As HLS compilers need to generate a finite state machine for each for loop,

which adds significant area overhead, it is desirable to convert for loops to an infinite while(1)

loop whenever possible. The compiler converts for loops to an infinite while(true) loop when

all the input values in a PE are from channels, and the loop variable is no longer used anywhere.

The infinite loop’s execution is then controlled by data availability of the input channels. The T2S-

Tensor compiler checks the following constraints to determine the feasibility of infinitizing a for

loop:

1 Loops with loop variables being used in the loop body cannot be infinitized. In Fig. 3.12(a),

loop i cannot be infinitized.

2 All the loops enclosing an infinitized loop have to be infinitized. In Fig. 3.12(a), as loop i

cannot be infinitized, loop j cannot be infinitized, either.
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3 Loops in the functions that are either the first producer or the very last consumer on the

device cannot be infinitized. Infinitizing such loops may make the computation never finish.

For example, A_loader, B_loader, and C_unloader in Fig. 3.3(g) cannot be infinitized.

4 Imperfect loops cannot be infinitized. In Fig. 3.12(b), loop j and k cannot be infinitized

separately, as infinitizing loop j will prevent loop k from being executed and infinitizing

loop k prevents further executions of loop j for a different i.

  for i = 0 .. N
    for j = 0 .. M
         = i + 1

  for i = 0 .. N
    for j = 0 .. M
       ...
    for k = 0 .. K
       ...

Non-infinitizable loops

Figure 3.12: Loops That Cannot be Infinitized

Code generation – Finally, the compiler generates the target code. Currently, the compiler gener-

ates Intel (Altera) OpenCL code for Intel FPGAs, and assembly for a research CGRA. The OpenCL

codes are further compiled by Intel (Altera) HLS compiler into bitstreams for FPGA. For CGRA,

the assembly codes are place-and-routed by an assembler and simulated by a cycle-accurate simu-

lator.

3.5 T2S-Tensor: Evaluation

I designed and wrote T2S-Tensor specifications for four important tensor kernels, including

GEMM, MTTKRP, TTM and TTMc. Their definitions are shown in Table 3.1. GEMM is a core

computation in many fields. MTTKRP is the computational bottleneck in canonical polyadic de-

composition (CPD), and TTM and TTMc are the bottlenecks in Tucker decomposition algorithms.

Table 3.1: Definitions of the Tensor Kernels

GEMM C(i, j)+ = A(i,k)∗B(k, j)
MTTKRP D(i, j)+ = A(i,k, l)∗B(k, j)∗C(l, j);
TTM C(i, j,k)+ = A(i, j, l)∗B(l,k)
TTMc D(i, j,k)+ = A(i, l,m)∗B(l, j)∗C(m,k)
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T2S-Tensor code

C(i) = A(i) * b

C.update(0).tile(i,ii,II)

C.update(0).unroll(ii)

Extended Halide IR

unrolled (ii, 0, II) {
for i = 0 … I

C[i*II + ii] += A[i*II 
+ ii] * b
}

This Work

FPGAsIntel (Altera) 
AOC compiler

OpenCL HLS Code

CGRA
CGRA Assembly

CGRA 
compiler

LLVM Code CPU

Figure 3.13: Complete Design Flow

The designs try to match the underlying hardware architectures for the maximum efficiency,

and thus for the same kernel, its designs for an FPGA and the CGRA are different. While all

four tensor kernels are dominated by multiply-add operations, they vary in data reuse and compute

patterns, and must be individually designed for the best performance. Therefore I have created

eight different designs, which is in fact a proof of the flexibility and generality of the proposed

approach.

For FPGA experiments, I use the Intel vLab Academic Cluster [Intb] to access one Xeon CPU

and an Arria 10 GX FPGA (10AX115N2F40E2LG). For CGRA experiments, I use a research

CGRA based on the triggered-instruction architecture (TIA) [PPA+15]. All the designs use the

machines’ native precisions, i.e., single and double-precision floats for the FPGA and CGRA,

respectively.

For either architecture, a high-performance ninja implementation of GEMM was available —

for FPGA it is a production design and implemented in OpenCL; for CGRA it is in assembly. Both

implementations were manually written and highly optimized by industry experts, and have been

extensively tuned for performance. These two designs took 18 and 3 months to develop, respec-

tively. For FPGA, I also compare with an NDRange-style OpenCL implementation, a tutorial HLS

design from Intel.
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For the other workloads, namely MTTKRP, TTM and TTMc, I am not aware of any existing

implementations on any spatial architectures. Since GEMM is a highly parallel and compute-

intensive application, it provides an estimate of how close one can get to the peak throughput of

the target hardware. Hence, I choose to use the performance of the ninja GEMM as a “yardstick”

to roughly estimate if the achieved throughput of a tensor kernel is high.

For FPGA experiments, I further report the absolute performance (in GFLOPS) and resource

usage. For CGRA experiments, I report performance relative to the ninja implementation of

GEMM. In addition, I report productivity in terms of the engineering time and lines of code (LOC).

3.5.1 Overall Performance and Productivity

For most of the workloads on either architecture, using a small fraction of lines of code, the

performance achieved by T2S-Tensor implementations is very close to or sometimes even higher

than that of the ninja implementation of GEMM.

On the FPGA, the T2S-Tensor designs achieve an absolute throughput of 549, 700, 562 and

738 GFLOPS for GEMM, MTTKRP, TTM and TTMc, respectively. On average, the T2S-Tensor

specifications have 29 LOC and achieve 637 GFLOPS. On the CGRA, the designs achieve 92%-

104% of the performance of the fine-tuned GEMM using an average 38 LOC. Roughly, it took

me approximately two weeks on the FPGA (due to long compile time for FPGA) and three days

on the CGRA for engineering a workload, which is only 3% of the time spent by the experts who

implemented the ninja GEMM.

Table 3.2: Comparison Between an NDRange OpenCL Baseline, T2S-Tensor and Ninja Implementations for
GEMM on Arria-10 FPGA

Baseline T2S-Tensor Ninja
LOC 70 20 750
Systolic Array Size — 10×8 10×8
Vector Length 16×float 16×float 16×float
# Logic Elements 131K (31%) 214K (50%) 230K (54%)
# DSPs 1,032 (68%) 1,282 (84%) 1,280 (84%)
# RAM Blocks 1,534 (57%) 1,384 (51%) 1,069 (39%)
Frequency (MHz) 189 215 245
Throughput (GFLOPs) 311 549 626
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3.5.2 Evaluation on the FPGA

A_loader

B_loader C_loader

D_unloader

D_drainer

D_collector

A_feeder

C_feeder
B_feeder

buffer

Figure 3.14: MTTKRP Design for FPGA

B_loader

A_loader

C_unloader
B_feeder

A_feeder

C_drainer

C_collector

buffer

Figure 3.15: TTM Design for FPGA

Table 3.2 compares the NDRange-style OpenCL baseline [Inta], T2S-Tensor and ninja GEMM

implementations. I have tuned the parameters of the baseline for the specific FPGA and show its

best performance. Overall, T2S-Tensor GEMM design achieves 1.76× speedup over the baseline,

and 88% of the performance of the manually written and highly optimized ninja implementation.
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C_loader

B_loader

D_unloader
C_feeder

B_feeder
D_drainer

D_collectorbuffer

A_loader

A_feeder

Figure 3.16: TTMc Design for FPGA

As one can see from Table 3.2, the baseline design is not able to efficiently utilize the DSP

resources and achieve a lower clock frequency. The design uses NDRange kernels consisting of a

2-dimensional array of work-items (threads), each loading one data element from each of the input

matrices and storing them in on-chip buffers, and computing one element of a tile of the output

matrix. While these work-items are scheduled dynamically on the FPGA, only a subset of work-

items can be executed simultaneously in lock step. The on-chip buffer requirement, however, is

determined by the total number of work-items which leads to poor utilization of on-chip buffers

and making it harder to fit a bigger design on the FPGA. In contrast, T2S-Tensor generates a

systolic array that requires buffers only for the data that are being processed in the hardware and

hence RAM usage remains well within the limits.

The T2S-Tensor GEMM design for the FPGA has been shown in Fig. 3.3(g). Here the parame-

ters are set such that it has ten rows and eight columns of PEs in the core systolic array, i.e., II=10

and JJ=8. The loads are streamed in the unit of 16 floats every memory access, i.e., KKK=16.

Due to vectorized gathering along the systolic array columns, 8 floats are stored to the memory

simultaneously. Each PE computes 1024 results with III=JJJ=32. Similarly, for MTTKRP, TTM

and TTMc each loop is tiled three times and two loops in the nested loop structure are unrolled to

get a 2-D systolic array. Table 3.3 shows the parameters for all the four designs. Data loads from

the memory and computation within each PE is vectorized by vectorizing the innermost loop. For

41



vectorizing stores, vectorized gathering is applied in each design and hence the second dimension

of the systolic array determines the vector length for stores.

For MTTKRP, all the four loops on i, j, k, and l are tiled three times, and ii and jj loops

are unrolled. The final design consists of a 8×9 systolic array, i.e., II=8 and JJ=9. Loads and

stores are done in the unit of 16 floats and nine floats respectively. Each PE computes 256 re-

sults with III=JJJ=16. To enable rotating registers for the compute buffers in PEs KKK is set

to 1, which ensures that consecutive elements of the compute buffer are accessed in consecu-

tive cycles. Since the MTTKRP computation, D(i, j) = ∑k,l A(i,k, l) ∗B(k, j) ∗C(l, j), can also

be expressed as D(i, j) = ∑k B(k, j) ∗ (∑l A(i,k, l) ∗C(l, j)), which reduces the number of MAC

(multiply-accumulate) operations at the cost of larger on-chip storage for intermediate results, I

manually perform this optimization in the innermost loop of the generated OpenCL code, which

is a tiny code change. This optimization reduces the number of operations to be performed in the

hardware, which results in a high DSP utilization leading to a throughput even better than GEMM

ninja implementation.

For TTM, loops i, j, k and l are tiled three times, loops jj and kk are unrolled with JJ=8

and KK=11 to form an 8×11 systolic array. Loads and stores are in units of 16 and 11 floats,

respectively. Each PE computes 1024 results with III=JJJ=8 and KKK=16. To enable rotating

registers, II is set to 1.

For TTMc, loops i, j, k, l, m are tiled three times, and jj and kk are unrolled loops with JJ=8

and KK=10, implementing an 8×10 systolic array. Loads are in units of 16 floats with MMM=16, and

stores are done in units of ten floats. A PE computes 256 results with III=16 and JJJ=KKK=4.

To enable rotating registers, II and LLL are set to 1. Similar to MTTKRP, TTMc i.e., D(i, j,k) =

∑l,m A(i, l,m)∗B(l, j)∗C(m,k), can be expressed as D(i, j,k)=∑l B(l, j)∗(∑m A(i, l,m)∗C(m,k)),

and I manually implemented the optimization in the generated OpenCL code.

The designs for these workloads are shown in Fig. 3.14, 3.15 and 3.16 with their resource usage

and performance shown in Table 3.4.

3.5.3 Evaluation on the CGRA

Fig. 3.17 shows the design for GEMM on CGRA. First, the triple loop nest is tiled, similar

to the FPGA design, so that a tile fits into the CGRA. Then for a tile, loader PEs read matrix

A from external memory, and send data to a feeder. The feeder has a “virtual buffer” inside,
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Table 3.3: Parameters for GEMM, MTTKRP, TTM and TTMc Designs

GEMM MTTKRP TTM TTMc
i, j, k, l, m 32,32,32,-,- 8,4,16,16,- 8,4,4,16,- 8,4,4,4,4
ii, jj, kk, ll, mm 10,8,32,-,- 8,9,16,1,- 1,8,11,4,- 1,8,10,32,2
iii, jjj, kkk, lll, mmm 32,32,16,-,- 16,16,1,16,- 8,8,16,16,- 16,4,4,1,16
Unrolled Loops ii, jj ii, jj jj, kk jj, kk
LOC 20 28 30 37
Systolic Array Size 8×10 8×9 8×11 8×10
Compute Vector Length 16×float 16×float 16×float 16×float
Load Vector Length 16×float 16×float 16×float 16×float
Store Vector Length 10×float 9×float 11×float 10×float

Table 3.4: Evaluation Results of MTTKRP, TTM and TTMc in T2S-Tensor on FPGA

# Logic # DSPs # RAM Frequency Throughput
Elements Blocks (MHz) (GFLOPs)

MTTKRP 228K (53%) 1,224 (81%) 1,526 (56%) 204 700
TTM 265K (64%) 1,416 (93%) 2,394 (88%) 201 562
TTMc 229K (54%) 1,368 (90%) 1,679 (62%) 205 738
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Figure 3.17: GEMM Design for CGRA

which is functionally equivalent to a single buffer based on scratchpad memory, but is implemented

using latency-insensitive channels (LICs) [FAP+12,PPA+15]. This basic construct is important to

performance: without it, GEMM loses almost 60% of performance. The same mechanism is built

for matrix B. The reduction loop k is unrolled so that several PEs are accumulating partial results
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Figure 3.18: TTM Design for CGRA
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Figure 3.19: TTM Design for CGRA

of the same C(i, j) with different parts of the matrix A and B data. The initial values of C(i,

j) are loaded from memory, and the final values are stored back to memory. One can visually

see the big differences of this design from its FPGA counterpart. Unlike the FPGA design which

is a 2-D systolic array, the CGRA design is 3-D systolic. This difference is due to the difference

between the architectures — unrolling a loop results in a PE for each iteration of the unrolled loop;

if the unrolled loop has inner loops not unrolled, a finite state machine (FSM) has to be constructed

for each PE, which is easy to implement on an FPGA using LUTs, but is difficult to implement

on a CGRA due to the limited number of control flow PEs. Hence, I fully unroll the innermost
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Figure 3.20: TTMc Design for CGRA

loop levels for the CGRA design to reduce the number of FSMs. This however increases the

inter-PE data communication channels which are expensive on FPGAs but since the CGRA uses

LICs, which are efficient for fine-grained data communication, the energy and performance cost is

minimal.

Fig. 3.18 shows the MTTKRP design. Similar to the GEMM design, there are loaders and

feeders (with virtual buffers) for all the input matrices. However, this is a 4-D systolic array where

i and j dimensions correspond to the elements in the output matrix, while the k and l dimension

correspond to reductions. Similarly, Fig. 3.19 and Fig. 3.20 are 4-D and 5-D systolic arrays for

TTM and TTMc where (i, j, k) correspond to output tensor elements for both TTM and TTMc,

and (l) and (l, m) are the reduction loops for TTM and TTMc, respectively.

Table 3.5 shows the LOC, performance and area results for all the four kernels. All the kernels

have utilized 100% fused-multiply add (FMA), except TTMc, which uses 95% FMAs, achieving a

performance very close to the ninja GEMM implementation. The average LOC for these designs

is 38 while the ninja GEMM implementation uses 2,280 LOC. The usage of all the other resources

for these designs are well within the hardware resource constraints.
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Table 3.5: Evaluation Results of T2S-Tensor Designs on the Research CGRA

LOC Throughput w.r.t
Ninja GEMM

FMA usage

GEMM 40 92% 100%
MTKRP 32 99% 100%
TTM 47 104% 100%
TTMc 38 103% 95%

3.6 Related Work

This section surveys a subset of the representative work on hardware description languages

(HDLs), HLS languages, DSLs, and their associated compilers.

HDLs (e.g., Verilog and VHDL) describe a circuit at the register-transfer level (RTL) with ex-

plicit timing [TM08, Nav97]. They can be compared to “assembly languages”. HLS languages

have a higher abstraction. They accept an algorithmic description of a desired behavior without

clock-level timing [GDWL12,CM08,CCA+11,CLN+11,BMG16]. T2S-Tensor code is more suc-

cinct and at a higher abstraction level than an HLS program. T2S-Tensor code controls a compiler

to generate details, instead of letting the programmer directly write the details. Languages like

Chisel [BVR+12], PyMTL [LZB14] and BlueSpec [Nik08] raise the level of hardware design

abstraction by introducing concepts like object orientation, functional programming and guarded

atomic actions in hardware design. Hot & Spicy [SMSF18] is another tool suite which translates

python functions to HLS-suitable C functions and thus integrates FPGA accelerators in Python

applications.

DSLs also have a higher abstraction level than HLS languages [VDKV00]. Such languages

express and optimize an algorithm in predefined domain-specific patterns, and lower the patterns

into an HDL [RKBA+13, PBY+17, KFP+18, LSY12, HBD+14, GLN+14]. The system presented

in this Chapter extends Halide [RKBA+13], a DSL for image processing on CPUs/GPUs, to spatial

architectures. Most of the optimizations I implemented are new to Halide as they are specific to

spatial architectures. Some of them, like loop unrolling, extend the existing Halide implementation.

Halide-HLS [PBY+17] is another spatial extension of Halide, where a dataflow graph of functions

is specified to offload to an FPGA, with line buffers to optimize the communication. It currently

focuses on image processing applications and has not implemented any of the tensor kernels I have.
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Spatial [KFP+18] is a language whose abstraction level is higher than T2S-Tensor. For exam-

ple, for matrix multiply, Spatial specifies the multiplication between two values from two matrices,

and lets the compiler determine an efficient systolic array for the computation. In comparison,

T2S-Tensor lets the programmer specify a systolic array in detail. This simplifies the compiler

due to the diversity of the possible systolic arrays for a single computation, and the difficulty for

a compiler to statically determine the best choice. I have attempted to make a direct comparison

with Spatial on the GEMM kernel. Unfortunately, the current Spatial provides a more robust flow

for Xilinx FPGAs but fails in compilation when I target the Intel device. Nevertheless, I notice

that the reported GEMM performance in the Spatial paper [KFP+18] is much lower than what I

have achieved. HeteroCL [LCH+19] decouples algorithm specification from compute, data type

and memory customizations. It also provides an abstraction level higher than T2S-Tensor where

the compiler automatically determines the systolic array for GEMM using PolySA [CW18] frame-

work.

3.7 Conclusions

I proposed a language and compilation framework that decouples algorithm from hardware spe-

cialization. In this framework, the programmers specify a tensor algorithm in a simple functional

form followed by the spatial optimizations to map the algorithm on a spatial hardware. With this

system, several important dense tensor kernels achieved high performance with high productivity.

These kernels achieved a performance close to the manually implemented designs from industry

experts with significantly low design effort and time.
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CHAPTER 4
TENSAURUS: A VERSATILE ACCELERATOR FOR MIXED

SPARSE-DENSE TENSOR COMPUTATIONS

This chapter explores hardware acceleration of both dense and mixed sparse-dense tensor com-

putations. It uses the domain knowledge gained from Chapter 3 to design a hardware accelerator

that can accelerate both dense and sparse tensor factorizations. This is done by co-designing the

hardware and a sparse storage format, which allows accessing the sparse data in a vectorized and

streaming manner and achieves high memory bandwidth utilization. For designing such an ac-

celerator, I extract a common computation pattern that is found in matrix and tensor computation

kernels presented in Chapter 2 and implement it in the hardware. By designing the hardware based

on this common compute pattern, I can not only accelerate tensor factorizations but also mixed

sparse-dense matrix operations.

4.1 Introduction

Many of the real world tensors and matrices are sparse, containing many zeros and thus can be

accelerated by sparse tensor computations. Traditionally, both dense and sparse tensor factoriza-

tions and sparse matrix computations have been done on CPUs and GPUs, both of which have low

energy-efficiency as they allocate excessive hardware resources to flexibly support various work-

loads [CHW+13, ESA+06, VSM11]. Hardware accelerators solve this energy efficiency problem

at the expense of flexibility. With the recent surge in deep learning hardware and parameter prun-

ing techniques, many hardware accelerators have been proposed for sparse matrix computations;

however, these accelerators are designed for low sparsity and hence do not generalize to the broad

domain of sparse matrix computations that involves matrices from different domains with a vary-

ing range of sparsity. Nevertheless, these sparse matrix accelerators cannot perform the common

tensor kernels in tensor factorizations. Although algebra on multi-dimensional tensors can be re-

duced to matrix-vector/matrix-matrix operations, it has been shown that doing so increases the

amount of intermediate storage and often leads to unnecessary computations [SRSK15]. Thus, the

main focus of this chapter is to design a single accelerator that can accelerate all the dense and

mixed sparse-dense tensor and matrix kernels mentioned in Chapter 2. There are two key chal-

lenges with designing such an accelerator. First, many of the real-world tensors such as Netflix
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movie ratings [BL+07], never-ending language learning (NELL) [CBK+10] and Amazon product

reviews [ML13] are highly sparse, which makes tensor computations memory bound. Second, the

compute and memory access patterns of different tensor and matrix kernels can be very differ-

ent, which makes it necessary to reduce these computations into some basic operations in order to

implement them in hardware.

In this work, I propose Tensaurus, a new hardware accelerator for highly efficient processing

of mixed sparse and dense tensor computations. Tensaurus accelerates a computation pattern that

I observe in common across different tensor factorization kernels as well as several widely used

matrix operations. It further exploits a new sparse storage format that I introduce to allow accessing

of sparse data in a vectorized and streaming manner to achieve high memory bandwidth utilization.

Thus, with the co-design of the accelerator architecture and sparse storage, Tensaurus is both

versatile and adaptable. It is versatile in the sense that it can accelerate both tensor factorizations

and common matrix operations such as matrix-matrix and matrix-vector multiplications, which

are key compute primitives in many ML applications. It can also easily adapt to different levels of

sparsity found in these computations.

To the best of my knowledge, no prior work has proposed a hardware accelerator for sparse

tensor factorizations and previous efforts have focused on dense tensor factorizations (e.g., T2S-

Tensor [SRB+19a] and [ZZZ19]).

The key technical contributions of this chapter are:

• This work is the first to propose a hardware accelerator that is capable of accelerating not

only sparse tensor factorizations, but also dense tensor factorizations and other common

mixed sparse-dense (sparse-dense and dense-dense) matrix operations for a wide range of

sparsity.

• I introduce a new sparse storage format, compressed interleaved sparse slice (CISS), which

allows accessing sparse data in a vectorized and streaming manner and thus achieves high

memory bandwidth utilization and performance for sparse tensor kernels.

• Tensaurus achieves significant speedup and energy reduction for tensor factorizations over

the state-of-the-art CPU and GPU implementations. Tensaurus also demonstrates higher

performance and energy efficiency compared to CPU, GPU, and the state-of-the-art hardware

accelerator for sparse CNNs.
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• Tensaurus also performs consistently better than the state-of-the-art sparse neural network

accelerator, Cambricon-X, on sparse-dense matrix multiplication for a wide range of sparsity.

4.2 Compute Pattern
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Figure 4.1: SpMTTKRP, SpTTMc, SpMM and SpMV Expressed Using the SF3 Compute Pattern

I observe that a common compute pattern can be extracted across all the aforementioned ker-

nels, namely, MTTKRP, TTMc, matrix-matrix multiplication, and matrix-vector multiplication. I

name this compute pattern as scalar-fiber product followed by fiber-fiber products (SF3) and it is

expressed in the following form:
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fibersout = ∑
D1

fiber1 op ∑
D0

(
scalar · fiber0

)
(4.1)

Table 4.1: Mapping of DMTTKRP, SpMTTKRP, DTTMc, SpTTMc, GEMM, SpMM, GEMV and SpMV Ker-
nels to the SF3 Compute Pattern

fibersout fiber1 D1 op scalar fiber0 D0

DMTTKRP Y(i, :) B( j, :) [0,J) ◦ A(i, j,k) C(k, :) [0,K)

SpMTTKRP Y(i, :) B( j, :) { j | ∃ k st. A(i, j,k) 6= 0} ◦ A(i, j,k) C(k, :) {k | A(i, j,k) 6= 0}

DTTMc Y(i, :, :) B( j, :) [0,J) ⊗ A(i, j,k) C(k, :) [0,K)

SpTTMc Y(i, :, :) B( j, :) { j | ∃ k st. A(i, j,k) 6= 0} ⊗ A(i, j,k) C(k, :) {k | A(i, j,k) 6= 0}

GEMM Y(i, :) NA NA NA A(i, j) B( j, :) [0,J)

SpMM Y(i, :) NA NA NA A(i, j) B( j, :) { j | A(i, j) 6= 0}

GEMV y(i) NA NA NA A(i, j) b( j) [0,J)

SpMV y(i) NA NA NA A(i, j) b( j) { j | A(i, j) 6= 0}

Here, fibersout represent one or more output fibers of a tensor, fibers0 and fibers1 represent

a single fiber from two tensors, scalar represents a scalar value from a tensor, op is either a

Hadamard product (◦) or a Kronecker product (⊗), and D1 and D0 are domains over which the

two summations are performed.

Table 4.1 shows how DMTTKRP, DTTMc, GEMM and GEMV map to SF3 compute pattern.

For DMTTKRP, fibersout is a row from Y matrix, fiber1 is a row from B matrix, op is ◦, scalar

is data value from A tensor and fiber0 is a row from C matrix. For DTTMc, all the notations are

the same as DMTTKRP, except fibersout are more than one fiber (one slice F1×F2) from Y tensor

and op is⊗. For GEMM, the scalar is data from A matrix, fiber0 is a row from B matrix, fibersout

is a row from Y matrix and op and fiber1 are not applicable (NA). Matrix-vector multiplication

is same as matrix-matrix multiplication except fibersout and fibers0 consist of only one element.

Since all the computations in Table 4.1 are dense, the domains D0 and D1 for each computation

are also continuous ranges.

Fig. 4.1 shows how SpMTTKRP, SpTTMc, SpMM and SpMV map to the SF3 compute pattern

in Eq. (4.1). Here the mapping of each sparse kernel to Eq. (4.1) is the same as that of their dense

counterparts except the domains D0 and D1 are non-continuous ranges and determined by the

position of non-zero entries in the sparse tensor. Although shown for 3-d tensor, the SF3 compute

pattern can be easily extended to tensors of any dimensions.
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The formulation in Eq. (4.1) exhibits coarse-grained parallelism, where different output fibers

can be computed in parallel and fine-grained single instruction multiple data (SIMD) parallelism

where the computation of a single fiber can be performed in a vectorized manner.

4.3 Sparse Format

Sparse tensor computations require a sparse storage format that is efficient for both load bal-

ancing and parallel data accesses in order to accelerate them on spatial hardware. The existing

sparse storage formats such as compressed sparse row (CSR) [BFF+09], compressed sparse fiber

(CSF) [SRSK15], co-ordinate (COO) and their variants [ZDZ+16, PBP+18] allocate data needed

by different processing elements (PEs) at far away locations in memory, resulting in low memory

bandwidth utilization.

Figs. 4.2a and 4.2b show a sparse tensor and how it is stored in an extended CSR format. In

this format, all the non-zero entries in the tensor are stored contiguously in the memory along with

their mode 1 and mode 2 indices j and k. An array of slice pointers whose length is equal to the

number of slices in the tensor (4 in this example) stores the pointers to the beginning of each slice

in the array of non-zero entries. Fig. 4.2c depicts cycle-by-cycle execution of two PEs, each of

which reads a different slice of the tensor from the memory in a streaming fashion. As it can be

seen in each cycle the two PEs read the data from non-contiguous memory locations.

The compressed interleaved sparse row (CISR) format proposed by Fowers et al. [FOS+14]

tackles this issue by storing the sparse data accessed by different PEs at the same time in contiguous

memory locations; however, this format requires centralized row decoding, lock-step execution,

and applies only to matrices. Partly inspired by CISR, I propose a new sparse storage format called

compressed interleaved sparse slice (CISS). With this new format, I overcome the limitations of

CISR and extend it to tensors with more than two dimensions. Fig. 4.2d shows the tensor in

Fig. 4.2a stored in the CISS format, which consists of an array of CISS entries. Each entry is

(dw+ 2 · iw) ·P bits long, where dw (data width) and iw (index width) are the bitwidths of the

non-zero elements and their mode indices, respectively, and P is the number of PEs in hardware.

For each PE, a CISS entry consists of three fields: nnz (non-zero data value), i/ j (mode 0 or mode

1 index) and k (mode 2 index). Since nnz is supposed to carry only non-zero data values, a 0 in nnz
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Figure 4.2: Storage Formats – (a) a 4×2×2 sparse tensor A; (b) the sparse tensor stored in extended CSR format.
Here the slice pointers point to beginning of a slice in the array consisting of non-zero data elements and their mode 1
(m1) and mode 0 (m1) indices. The data in sparse tensor is split across two PEs, where PE0 accesses data from slice
0 and slice 3, and PE1 accesses data from slice 1 and slice 2; (c) data accessed by different PEs in different cycles
while computing fibers of output matrix Y(i, :) in SpMTTKRP. Here the data accessed by different PEs in the same
cycle is stored in non-contiguous memory locations; and (d) the sparse tensor stored in the CISS format. Here a single
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53



1.6 1.8 1.9 1.9

4.3
6.1

11.2 11.2

0

2

4

6

8

10

12

2 4 8 16B
an

d
w

id
th

 (
G

B
/s

)

Number of PEs

Extended CSR SCISR

Peak: 12.8 GB/s

Figure 4.3: Memory Bandwidth Comparison – Achieved bandwidth comparison between CSR and CISS for differ-
ent numbers of PEs. Here the utilized bandwidth for CSR saturates at 1.9 GB/s for 8 PEs, while CISS is able achieve
70% of the peak bandwidth.

indicates that the i/ j field consists of i value and a non-zero in nnz indicates that i/ j consists of a

j value.

To store a sparse tensor in CISS format, first each PE is assigned a slice of the tensor corre-

sponding to its ID. For example, in Fig. 4.2d PE0 is assigned slice 0 and PE1 is assigned slice 1

in the first cycle. The slice indices for each PE are written to the i/ j and the nnz is set to 0. In

the next few cycles, the CISS entries for a PE are filled with the non-zero entries from the slice by

assigning the non-zero data elements to nnz, mode 1 indices to i/ j and mode 2 indices to k. When

all the non-zero elements in the slice assigned to a PE are scheduled, the next available slice is

assigned to that PE and its slice index and data values are inserted into the array of CISS entries.

For example, in Fig. 4.2d when all the non-zero entries from the slice i = 1 are inserted into the

array, the next available slice is slice i = 2 and hence it gets assigned to PE1.

Since CISS assigns the non-zeros accessed from different PEs at the same time in contiguous

memory locations, it achieves high spatial locality and memory bandwidth utilization. The CISS

format also schedules the next available slice of the tensor to the PE with the least data that en-

sures a load balanced schedule where each PE is assigned a similar number of non-zero entries.

Although described for 3-d tensors, the CISS format can be easily generalized to 2-d matrices and

tensors with more than three dimensions.

Fig. 4.3 shows the achieved bandwidth when multiple PEs stream a 3-d tensor stored in ex-

tended CSR and CISS formats from the off-chip memory with a peak bandwidth of 16 GB/s. As it
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can be seen, the achieved bandwidth for extended CSR saturates at 1.9 GB/s for 8 PEs while CISS

achieves a bandwidth of 11.2 GB/s, very close to the peak bandwidth.

4.4 Tensaurus Microarchitecture

In this section, using SpMTTKRP as a driving example, I explain the implementation of the

SF3 compute pattern described in Section 4.2.

Fig. 4.4 shows the execution of SpMTTKRP kernel using the same tensor as in Fig. 4.2a on two

PEs. The slices i = 0 and i = 3 are assigned to PE0 and slices i = 1 and i = 2 are assigned to PE1

(same as in Fig. 4.2). Each PE reads a non-zero data element ai jk from the sparse tensor A, the kth

row from matrix C (ck:) and performs a scalar-vector multiplication to produce tk
i j: All the partial

results tk
i j: for different values of k are accumulated together and then multiplied by the jth row of

matrix B (b j:) to produce the partial results y j
i:. All the y j

i: vectors are then summed together for

different values of j to produce the ith row of the output matrix Y. From this example, it can be seen

that the core operations in the SpMTTKRP are scalar-vector multiplication (ai jk ·ck:), element-wise

vector-vector multiplication (tk
i j: ◦b j:) and element-wise vector-vector addition (tk

i j: + tk′
i j: and y j

i: +

y j′
i: ). There are also two types of intermediate results produced in the SpMTTKRP computation:

tk
i j: and y j

i:.

For the SF3 compute pattern in Eq. (4.1), the scalar-vector multiplications arise from scalar ·

fiber0; the element-wise vector-vector multiplication (VVMUL) operations arises from op; and

the element-wise vector-vector addition (VVADD) arises from the two summations over D0 and

D1. The intermediate results in Eq. (4.1) correspond to the partial results of the computations

scalar ·fiber0 and fiber1 op ∑D0 scalar ·fiber0. Thus, the micro-architecture of a PE in Tensaurus

can be designed using these three major operations: scalar-vector multiplication, VVMUL and

VVADD and two sets of storage registers for the two kinds of partial results. For scalability, I can

further split a single vector operation into multiple small vector operations, each of vector length

VLEN.
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Figure 4.4: Cycle by Cycle Execution of SpMTTKRP on Two PEs

4.4.1 Implementation Details of Tensaurus

Fig. 4.5 shows the architecture of Tensaurus, which consists of a 2-D array (r× c) of compute

PEs, a tensor load unit (TLU), a matrix load unit (MLU), an array of scratchpad memories (SPM)

and a matrix store unit (MSU). The TLU reads the first operand tensor, which is either stored

in CISS format for sparse-dense kernels or dense format for dense-dense kernels, from the main

memory. The MLU reads the dense operand matrices from the main memory and sends them to

the SPMs. The SPMs receive the matrix data from the MLU and cache them in the double buffers.

Each PE gets the data from the TLU and the SPM, performs VVMUL and VVADD operations

in SIMD fashion (with vector length as VLEN) and accumulates the results in either a temporary

shift register (TSR) or output shift register (OSR) depending on the type of accumulation. When

the partial results for the current input tiles are completely evaluated, the PE drains the result

to the MSU. Although each PE accumulates all the partial sums in local shift registers for the

current input tiles, different input tiles may still update the same output element. Hence the MSU

accumulates the drained results from the compute PEs and stores them in an output double buffer

to perform reductions across different tiles. When all the input tiles for an output tile are processed,

the MSU writes the results from the output buffer to main memory.
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Figure 4.5: An Overview of Tensaurus Architecture – (a) A High Bandwidth Memory (HBM) is connected to the
MLU, TLU and MSU via an arbiter. The MLU is connected to an array of SPMs using on-chip FIFOs. Each SPM
consists of an array of r double buffers each of which is connected to the crossbar. The TLU is connected to PEs in
the first column of 2-d systolic array to supply the sparse/dense data from the first operand matrix/tensor. Each PE is
connected to the PE in the same row for systolic communications and to the crossbar in the same column to request
the data from SPM. A systolic network from PEs going downwards connects PEs with the MSU to drain the results.
(b) The architecture of a single PE which consists of a control processor (CP) implemented as an FSM (finite state
machine), a repeat unit, VVMUL unit, VVADD unit, TSR and OSR shift-registers.
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Tensor Load Unit

The TLU reads the data for the first kernel operand from the main memory, which is either

a sparse tensor stored in CISS format or a dense tensor stored in dense format. The read data

is then pushed to the hardware queues connecting the TLU and the boundary PEs. The queues

between the TLU and the boundary PEs ensure that the TLU and PEs can work asynchronously.

To enable non-blocking memory accesses, the TLU is capable of handling out-of-order memory

responses. It tries to send a load request to the main memory every clock cycle and pushes the

request ID to a hardware queue in-order. When the response for a memory request arrives (out-of-

order), the response data is written to the hardware queue and the corresponding entry is marked

as completed. In each cycle, the TLU polls the head of the hardware queue and pops the data if

marked as completed and sends it to the boundary PEs. Since the CISS format ensures that the

data accessed by the PEs at the same time is stored contiguously in the memory, the TLU sends

wide read requests (one CISS entry) to the main memory to saturate the memory bandwidth.

Matrix Load Unit

The MLU reads the data for the dense operand matrices from the main memory. Similar to the

TLU, it consists of hardware queues to perform out-of-order memory reads. The MLU reads data

in chunks of c ·V LEN ·dw bits from the main memory and sends the data to the SPMs.

Scratchpad Memories

The SPMs are responsible for two major tasks: they read the matrix data from MLU and store

it in the local buffers, and they serve a read request from the PEs in the corresponding column

of the PE array. To avoid serialization between read and write to the buffers, the local buffers

are implemented as double buffers. Each SPM receives data in chunks of V LEN · dw bits from

the MLU and stores it into one of the buffers. The read and write port width of each buffer is

V LEN · dw bits. Inside an SPM, a tile of a matrix is banked such that consecutive rows from the

matrix are assigned to different buffers. Since a PE can request the data from any row of the matrix,

a crossbar is used to connect different buffers to the PEs as shown in Fig. 4.5.

For SpMTTKRP and DMTTKRP, each SPM stores a tile of both the dense operand matrices B

and C. For SpTTMc and DTTMc, only the SPM in the first column stores a tile of both the first
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and second dense operand matrices while the rest of the SPMs store only the tiles of the second

operand matrix C. Thus, the SPM in the first column has 2× the amount of buffer capacity as

compared to other SPMs. For SpMM and GEMM, each SPM stores tiles of the dense operand

matrix B; and for SpMV and GEMV, only the SPM in the first column of the PE array is active,

and stores a tile of dense input vector b.

Compute PEs

The compute PEs are designed for efficient computation of the SF3 compute pattern in Eq. (4.1).

Fig. 4.5b shows the design of a single compute PE. It consists of a control processor (CP), two shift-

registers (temporary shift register (TSR) and output shift register (OSR)), a VVMUL unit, and a

VVADD unit. The VVMUL and VVADD units process vectors of size VLEN. The TSR and OSR

consist of TLEN and OLEN number of shift-registers, each of which is V LEN ·dw bit wide. The

TSR is used to store the result of ∑D0 scalar · fiber0 in Eq. (4.1) and the OSR stores the partial

sums for the output fibersout . Since for SpMM and SpMV, fiber1 and op are not applicable, the

TSR is not used and the OSR stores the value of the computation ∑D0 scalar ·fiber0, which also is

the fibersout . The PEs in the same row form a systolic array where the PEs on the left boundary

read the (scalar, j,k) triplets (in the case of SpMTTKRP, DMTTKRP, SpTTMc and DTTMc) and

(scalar, j) pairs (in the case of SpMM, GEMM, SpMV and GEMV), and forward them to the PEs

in the same row. Here the scalar is the non-zero element from the sparse tensor operand.

For SpMTTKRP, each PE requests the data from the kth row of the C matrix from the SPM. The

SPM receives the request and sends VLEN elements from that row to the PE. The PE then replicates

the scalar to perform a VVMUL operation corresponding to 1 in Fig. 4.1a and accumulates the

results in the TSR. When all the non-zero entries in A(i, j, :) are processed, the PE requests the

SPM for the data from the jth row of matrix B, performs a VVMUL operation with the partial

results in the TSR followed by a VVADD with the partial results in the OSR 2 , and accumulates

the result in the OSR. When all the non-zeros in the ith slice of the tensor (A(i, :, :)) are processed,

the results in the OSR are sent to the MSU, which writes them to the output buffer. Fig. 4.6 shows

the execution of SpMTTKRP kernel for the sparse tensor in Fig. 4.2a on a 2×2 PE array. Here, the

dense matrices are tiled along the columns, banked along rows and stored in different local buffers

(VLEN is assumed to be one).
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Figure 4.6: SpMTTKRP on Tensaurus – (a) 2×2 PE array in Tensaurus where dense matrix B is tiled, banked and
stored in the buffers of different SPMs. The data from sparse tensor A is stored in the memory in CISS format (only
data values shown); (b) cycle by cycle execution of SpMTTKRP kernel on the 2×2 PE array. Here VLEN is assumed
to be one.

For SpTTMc, each PE acts in the exact same way as in SpMTTKRP; however, when all the

non-zero entries in A (i, j, :) are processed and it has requested the data from the jth row of matrix
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B, instead of directly performing a VVMUL with the TSR as in case of SpMTTKRP, it streams

the values from the jth row of matrix B one by one. It then replicates these values to perform a

VVMUL with the TSR and accumulates the results in one of the shift-registers in the OSR. The

number of shift registers in the OSR (OLEN) is thus set to be VLEN. This approach in effect

computes the outer-product of the row from matrix B and the value in the TSR 2 .

For SpMM, each PE sends the column index j to its SPM, which reads VLEN elements from

the jth row of matrix B and sends them to the PE. The PE then replicates the scalar value from

sparse matrix, performs a VVMUL operation corresponding to 1 in Fig. 4.1c and accumulates the

result in the OSR. When all the non-zero entries in the current row of the sparse matrix A(i, :) are

processed, the PE drains the OSR data to the MSU.

For SpMV, since the second operand is a dense vector instead of a dense matrix, only the

first column of PEs in the systolic array is active. Each PE sends the column index j of the

non-zero entry A(i, j) to the SPM similar to SpMM. However, this time the SPM reads only one

element from the jth index of the dense vector b and sends it to the PE. The PE then performs a

scalar multiplication between the scalar value from sparse matrix A and the dense vector element,

corresponding to 1 in Fig. 4.1d, and accumulates the result in a single register of the OSR. When

all the non-zero entries in the current row of the sparse matrix are processed, the PE drains the

OSR data to the MSU.

For dense operations (DMTTKRP, DTTMc, GEMM and GEMV), the TLU reads the data in

dense format, constructs a CISS representation on the fly and sends it to the PEs. The PEs and

other units remain unaware that they are performing a dense computation. Since in the case of

dense operations each PE from the same column would request the same entry from the SPM,

these requests can get serialized by the crossbar. To avoid such serialization, for dense operations,

only the PE in the first row is responsible for sending row addresses to the SPM and the crossbar

broadcasts the response to all the PEs in the same column.

Matrix Store Unit

The MSU is responsible for receiving the partial results from the PEs and accumulating them

in the output buffer. The MSU drains the output buffer to the main memory when all the input tiles

corresponding to an output tile have been processed. Although buffering the intermediate results

in the output buffer reduces the number of off-chip memory accesses, it also limits the tile size of
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the sparse input tensor. Since for very sparse tensors the benefit of storing the intermediate results

in the buffer is outweighed by the larger tile size of the tensor (as it results in more reuse of the

dense operand matrices), the MSU can be configured to directly accumulate the results in the main

memory.

4.5 Tensaurus Experimental Setup

4.5.1 Simulation Infrastructure

To evaluate the performance of Tensaurus, I model the architecture of Tensaurus consisting of

TLU, MLU, SPMs, PEs, MSU and HBM using the gem5 simulator [BBB+11]. The gem5 model

uses an 8× 8 PE array with V LEN = 4. Each SPM except the first consists of a double buffer of

size 2×16KB where each side of the double buffer is divided into 8 2KB banks. The SPM in the

first column has a double buffer of size 2×32KB divided into 16 2KB banks. The MSU consists of

an output double buffer of size 2×128KB, which is further divided into 8 16KB banks. For HBM,

I use the gem5 model, which supports up to 8 128-bit physical channels, runs at 1GHz clock

frequency and provides a peak memory bandwidth of 128 GB/s. Tensaurus is attached to a CPU

as a co-processor, where the CPU executes instructions to configure Tensaurus to run a specific

tensor kernel. The configuration instructions configure Tensaurus for: (1) mode of operation like

SpMTTKRP, SpMM, etc. and (2) size of tensors and matrices.

4.5.2 Measurements

The PEs and the crossbar were implemented in RTL using PyMTL [LZB14], synthesized us-

ing the Synopsys Design Compiler and TSMC 28nm library and placed-and-routed using Cadence

Innovus. For the SPM and MSU, since the majority of area and power is dominated by scratch-

pads, I used CACTI 7.0 [MBJ09] to model SRAM latencies, area and power. For the TLU, I

pessimistically assumed the same area and power as a single PE. Table 4.2 shows the area and

power breakdown of different components of the design. For HBM I use the energy numbers

from [Shi16].
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Table 4.2: Area and Power Breakdown of Tensaurus

Component Area(mm2) % Power (mW) %

PE 0.625 27.2 % 402.30 40.9 %
Xbar 0.066 2.8 % 24.27 2.5%
SPM 0.832 36.2 % 296.05 30.1 %
MSU 0.759 33.0 % 247.03 25.2 %
TLU 0.009 0.4 % 6.28 0.6%
MLU 0.009 0.4 % 6.28 0.6 %

Total 2.3 100 % 982.21 100 %

4.5.3 Baselines

I compare Tensaurus against four baselines: CPU, GPU, Cambricon-X [ZDZ+16] and T2S-

Tensor [SRB+19a].

CPU: I use SPLATT [SRSK15] and Sparse BLAS [DHP02] to evaluate our benchmarks on a single

core of an Intel(R) Xeon(R) CPU E7-8867 running at 2.40 GHz with 32 KB L1 cache, 256 KB

L2 cache and 45 MB of L3 cache. For energy estimates I use McPAT 1.3 [LAS+09] CPU energy

models.

GPU: I use ParTI [LMV18, MLW+19] and cuSPARSE [NCVK10] to evaluate the benchmarks

on a modern GPU Titan Xp, which has GDDR5x DRAM with a peak bandwidth of 547.6 GB/s

and a peak 32-bit performance of 12.15 TFLOP/s. I use CUDA 9.1 for programming the GPU.

For power estimation, I use thermal design power (TDP) from the GPU datasheet. I do not use

GPUWattch [LHE+13] integrated with GPGPU-Sim [BYF+09] since it does not provide support

for the latest GPUs and CUDA versions above 4.0.

Accelerator: For SpMM, I also compare Tensaurus against the Cambricon-X [ZDZ+16] state-

of-the-art CNN accelerator, which uses sparse weights and dense activations. I implement the

architecture of Cambricon-X in gem5 and scale it to have the same bitwidth, clock frequency,

number of multiply-accumulate (MAC) units, size of on-chip RAM and DRAM bandwidth as our

accelerator. For energy comparisons, I use the power numbers from [ZDZ+16], which are in 65nm

technology node and scale them to 28nm using [tecc, tece]. The dynamic power can be estimated

as α fCV 2
dd , where α is the switching activity, f is the clock frequency, C is the total capacitance

and Vdd is the supply voltage. Since α remains the same for the two technology nodes (65nm

and 28nm) and the capacitance scales with the area of the design, I use the square of the ratio
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of Contacted Gate Poly Pitch CPP (which is technology dependent) from [tece] and [tecc] as a

scaling factor for C. I further use the ratio of Vdd from [tece] and [tecc] and frequency numbers

from [ZDZ+16] to scale V 2
dd and f . For DRAM energy, I measure the number of DRAM accesses

from the simulator and use the HBM energy from [Shi16].

For DMTTKRP, DTTMc and GEMM I compare Tensaurus against T2S-Tensor [SRB+19a],

which implements these kernels on an FPGA. I scale the design in T2S-Tensor to use the same

number of MAC units and clock frequency as Tensaurus.

Table 4.3: Tensors with Their Dimensions, Number of Non-Zeros (nnz), Density and Problem Domain

Tensor Dimensions nnz Density Domain

nell-2 12K × 9K × 28K 77M 2.5e-5 NLP
netflix 480K × 18K × 2K 100M 5.7e-6 Rec. Sys.
poisson3D 3K × 3K × 3K 99M 3.6e-3 Synthetic

Table 4.4: Weight Matrices from AlexNet and VGG-16 with Their Dimensions, Number of Non-Zeros (nnz)
and Density

Layer Dim. Density Layer Dim. Density

A
le

xN
et c1 96 × 363 0.84 c2 256 × 1200 0.38

c3 384 × 2304 0.35 c4 384 × 1728 0.37
c5 256 × 1728 0.37 fc6 9216 × 4096 0.09
fc7 4096 × 4096 0.09 fc8 4096 × 1000 0.25

V
G

G
-1

6

c1_1 64 × 27 0.58 c1_2 64 × 576 0.22
c2_1 128 × 1152 0.34 c2_2 128 × 1152 0.36
c3_1 256 × 1152 0.53 c3_2 256 × 2304 0.24
c3_3 256 × 2304 0.42 c4_1 512 × 2304 0.32
c4_2 512 × 4608 0.27 c4_3 512 × 4608 0.34
c5_1 512 × 4608 0.35 c5_2 512 × 4608 0.29
c5_3 512 × 4608 0.36 fc6 25088 × 2096 0.01
fc7 4096 × 4096 0.02 fc8 4096 × 1000 0.09

4.5.4 Datasets

For SpMTTKRP and SpTTMc, I use the tensor datasets shown in Table 4.3. The nell-2

tensor is a snapshot of the never ending language learner knowledge base that attempts to create a

computer system that learns how to read the web [CBK+10]. The netflix dataset is taken from
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Table 4.5: Matrices from SuiteSparse [DH11] with Their Dimensions, Number of Non-Zeros (nnz), Density and
Problem Domain

Matrix Dim nnz Density Domain

amazon0312 401K × 401K 3.2M 1.9e-5 Copurchase network
m133-b3 200K × 200K 801K 2.0e-5 Combinatorics
scircuit 171K × 171K 959K 3.2e-5 Circuit simulation
p2pGnutella31 63K × 63K 148K 3.7e-5 p2p network
offshore 260K × 260K 4.2M 6.2e-5 EM Problem
cage12 130K × 130K 2.0M 1.1e-4 Weighted graph
2cubes-sphere 101K × 101K 1.6M 1.5e-4 EM Problem
filter3D 106K × 106K 2.7M 2.4e-4 Reduction problem
emailEnron 36.7K × 36.7K 368K 2.7e-4 Email network
citeseer 3.3K × 3.3K 4.7K 4.2e-4 Graph Learning
cora 2.7K × 2.7K 5.3K 7.2e-4 Graph Learning
wikiVote 8.3K × 8.3K 104K 1.5e-3 Wikipedia network
poisson3Da 14K × 14K 353K 1.8e-3 Fluid Dynamics

the Netflix prize competition [BL+07] and poisson3D is taken from [SK17]. The nell-2 and

netflix are public datasets and taken from Smith et al. [SCL+17].

For SpMM, I use the pruned models for AlexNet and VGG-16 [HPTD15]. I did not use

any of the newer CNN models for this study as their pruned weights are not publicly available.

Table 4.4 shows the sparse weight matrices in these CNN models with their size and densities.

For SpMM, I also use the sparse matrices from SuiteSparse [DH11] and graph benchmarks from

GraphSAGE [HYL17]. Table 4.5 shows the sparse matrices from SuiteSparse and GraphSAGE.

For SpMV, I use the same matrices from SuiteSparse and GraphSAGE as in SpMM.

4.6 Tensaurus Evaluation

4.6.1 Roofline Evaluation

Figs. 4.7, 4.8 and 4.9 show the throughput of SpMTTKRP, DMTTKRP, SpTTMc, DTTMc,

SpMM and GEMM, under the roofline [WWP09] of Tensaurus. The x-axis shows operation in-

tensity, which is the number of operations (multiply and add) performed for each byte of data

accessed from the off-chip memory. The y-axis shows the performance in GOP/s. The horizontal

line towards the right of the plot shows the peak attainable performance from the design when
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the operation intensity is high (kernel is compute bound) and the inclined line (with slope 1) to-

wards the left shows the peak attainable performance when the operation intensity is low (kernel

is memory bound). The point where these two lines intersect is called the knee point. The value of

throughput for operation intensity of 1 represents the peak memory bandwidth (in GB/s). The gap

between the roofline and the achieved performance of a kernel indicates the inefficiencies within

the hardware. Our design consists of an 8×8 PE array, each with 4 SIMD MAC units and hence it

has 8×8×4×2 = 512 scalar multipliers and adders. Since Tensaurus is simulated at 2GHz clock

frequency, the scratchpads are assumed to be synchronous where each PE spends every other clock

cycle to access the scratchpads instead of doing a MAC. Thus, the peak attainable throughput of

Tensaurus is 512×2×0.5 = 512 GOP/s. For peak memory bandwidth, I use the peak bandwidth

of HBM which is 128 GB/s.
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Figure 4.7: Roofline for SpMTTKRP

Fig. 4.7 shows the achieved throughput for SpMTTKRP along all the three modes of the three

tensors shown in Table 4.3. Here, SpMTTKRP on all the tensors except poisson3D is memory

bound while poisson3D is compute bound. This is because among all the tensors poisson3D has

the highest density. For all the SpMTTKRP kernels Tensaurus is able to perform close to the peak

throughput.

Fig. 4.8 shows the achieved throughput for SpTTMc for the three tensors along each mode.

Here, nell-2-m0, nell-2-m1 and poisson3D are compute bound while the others are memory

bound and the achieved performance on each kernel is very close to the peak throughput. It can also
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be seen from Fig. 4.7 and 4.8 that the operation intensity for the same tensor along the same mode

is higher for SpTTMc as compared to SpMTTKRP. The reason behind this is SpTTMc performs

outer-product as an intermediate operation as shown in Fig. 4.1d which has more MAC operations

compared to the Hadamard product as in Fig. 4.1c.
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Figure 4.9: Roofline for SpMM

Fig. 4.9 shows the achieved throughput for sparse conv layers in AlexNet and VGG-16 and

sparse matrices from SuiteSparse [DH11] and GraphSAGE [HYL17] for the SpMM kernel. For
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all the layers except c1_1 and c1_2 the achieved throughput is very close to the peak throughput.

For c1_1 and c1_2, since the sparse weight matrices are very small (Table 4.4), the scratchpads

and MAC units in Tensaurus are underutilized. For the SuiteSparse and GraphSAGE matrices

since the densities of these matrices are very low (Table 4.5), the SpMM kernel is memory bound

and Tensaurus achieves very close to the peak throughput in the memory bound region.

Figs. 4.7, 4.8 and 4.9, also show the achieved throughput for dense MTTKRP, TTMc and

GEMM on our accelerator (labeled as “dense"). It can be seen that all the dense kernels are

compute bound and our accelerator achieves close to the peak throughput for each of them.

4.6.2 Performance Evaluation

Fig. 4.10(a) shows the speedup of Tensaurus and GPU (ParTI) on SpMTTKRP for the three

tensors along each mode over the CPU (SPLATT) baseline. Tensaurus achieves a geomean speedup

of 22.9× over CPU and 3.1× over GPU.

Fig. 4.11(a) shows the speedup of Tensaurus and GPU (ParTI) for SpTTMc on three tensors

along each mode over the CPU (SPLATT) baseline. Here, Tensaurus achieves 6× speedup over

CPU. However, Tensaurus achieves 0.1× of the performance of the GPU baseline. This slowdown

compared to GPU (PaRTI) is because in PaRTI a significant portion of the SpTTMc algorithm runs

on the host CPU, but for comparison with Tensaurus I do not take into account the CPU execution

time. After taking CPU execution time into account, Tensaurus would achieve a 5× speedup over

GPU. Unlike SpMTTKRP, where the speedup of Tensaurus is more than 20× over CPU, I also

achieve a lower speedup of 6× in the case of SpTTMc. The reason behind this is SpTTMc benefits

significantly from the operand factorization. A smaller tile size and on-chip memory limits operand

factoring opportunities, and Tensaurus uses just 512KB of on-chip memory as compared to 45MB

of L3 cache in the case of the CPU.

Figs. 4.12(a) and 4.13(a) show the speedup of Tensaurus, GPU (cuSPARSE) and Cambricon-

X over the CPU (SparseBLAS) baseline for AlexNet and VGG-16. For most of the conv layers

Tensaurus performs better than CPU, GPU and Cambricon-X. On average, Tensaurus is 349.2×,

1.8× and 1.9× faster than CPU, GPU and Cambricon-X, respectively.

Fig. 4.14(a) shows the speedup of Tensaurus, GPU and Cambricon-X over CPU baseline for

benchmarks from SuiteSparse and GraphSAGE. Unlike CNNs where the matrices have low spar-

sity (high density), these matrices have really high sparsity (low density). Tensaurus performs
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Figure 4.10: Speedup and Energy Benefit of Tensaurus, GPU (PaRTI) and Tensaurus-Dense Over CPU
(SPLATT) Baseline for SpMTTKRP on Sparse Tensors in Table 4.3

better than Cambricon-X on all the matrices and often beats GPU. Overall, Tensaurus achieves

125.8× and 119.7× speedup over CPU and Cambricon-X, respectively and achieves 0.87× of the

performance of GPU for these matrices.

To further analyse the performance of Tensaurus for different densities of sparse matrix, I

generate synthetic matrices and measure SpMM performance for Tensaurus and all the baselines.

Fig. 4.15 shows the speedup of Tensaurus, GPU, and Cambricon-X over the CPU baseline for

different densities for sparse matrices. As it can be seen, Tensaurus performs consistently better
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Figure 4.11: Speedup and Energy Benefit of Tensaurus, GPU (PaRTI) and Tensaurus-Dense Over CPU
(SPLATT) Baseline for SpTTMc on Sparse Tensors in Table 4.3.

than all the baselines and the performance of GPU is very similar to the performance of Tensaurus.

I further observe that the performance benefit of storing the partial results of a tile in output buffer

of the MSU is outweighed by having large tiles of sparse matrix and directly storing them in

memory for densities below 0.0003, and hence I turn off the output buffer in the MSU for all the

experiments where densities are less than 0.0003.

Fig. 4.16(a) shows the speedup of Tensaurus, GPU (cuSPARSE) and Cambricon-X over CPU

(SparseBLAS) baseline for benchmarks from SuiteSparse and GraphSAGE for the SpMV kernel.

Overall Tensaurus achieves 7.7× and 0.45× speedup over CPU and GPU. Since SpMV is highly
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Figure 4.12: Speedup and Energy Benefit of Tensaurus, GPU (cuSPARSE) and Cambricon-X over CPU (Sparse
BLAS) Baseline for SpMM (Conv Layers) and SpMV (Fully Connected Layers) on Sparse Matrices from
AlexNet

memory bound and GPU has 5× more bandwidth and more on-chip memory the performance of

SpMV is better on GPU as compared to Tensaurus.

Table 4.6: Comparison between the performance of Tensaurus-dense and T2S-Tensor [SRB+19a]

Benchmark Throughput (GOP/s) Speedup
Tensaurus-dense T2S-Tensor

DMTTKRP 511.9 986.3 0.52×
DTTMc 498.9 926.6 0.54×
GEMM 506.5 1019.8 0.49×
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Figure 4.13: Speedup and Energy Benefit of Tensaurus, GPU (cuSPARSE) and Cambricon-X over CPU (Sparse
BLAS) Baseline for SpMM (Conv Layers) and SpMV (Fully Connected Layers) on Sparse Matrices from VGG-
16

I further compare the performance of DMTTKRP, DTTMc and GEMM with T2S-Tensor. Ta-

ble 4.6 shows the throughput of our accelerator in dense mode (Tensaurus-dense) compared to

T2S-Tensor. As it can be seen for DMTTKRP, DTTMc and GEMM, Tensaurus-dense achieves

close to 0.5× of the performance of T2S-Tensor, which is a pessimistic estimate since I assume

perfect scaling for T2S-Tensor.
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Figure 4.14: Speedup and Energy Benefit of Tensaurus, GPU (cuSPARSE) and Cambricon-X over CPU (Sparse
BLAS) Baseline for SpMM on Sparse Matrices from SuiteSparse and GraphSAGE

4.6.3 Energy

Fig. 4.10(b) and 4.11(b) show the energy benefit of our accelerator and GPU over the CPU

baseline for SpMTTKRP and SpTTMc on three tensors along each mode. Overall, our accelerator

is 223.2× and 292.8× more energy efficient than CPU and GPU for SpMTTKRP and 23.2× and

30.9× more energy efficient than CPU and GPU for SpTTMc.

Fig. 4.12(b) and 4.13(b) shows the energy benefit of our accelerator, GPU and Cambricon-

X over the CPU baseline for AlexNet and VGG-16. On average, our accelerator is 1983.7×,
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Figure 4.15: Speedup of Tensaurus, GPU (cuSPARSE) and Cambricon-X over CPU (Sparse BLAS) Baseline
for SpMM on Synthetic Matrices with Density Varying from 0.0001 to 0.9

226.6× and 1.7×more energy efficient than CPU, GPU and Cambricon-X. Fig. 4.14(b) shows the

energy benefit of our accelerator for SpMM on SuiteSparse and GraphSAGE matrices. Overall our

accelerator is 405.6×, 62.5× and 101.5×more energy efficient than CPU, GPU and Cambricon-X.

For dense GEMM, I compare the performance per Watt with Google TPU [JYP+17]. TPU

is implemented in the same technology node 28nm, achieves 92 TOPS/s for 8-bit precision (23

TOPS/s for 32-bit precision) and has a TDP of 75W, thus achieving a performance/watt of 0.31

TOPS/s/Watt. In contrast, Tensaurus has a power consumption of 1.26 W and achieves a through-

put of 0.5 TOPS/s with a performance/watt ratio of 0.39 TOPS/s/Watt which is very similar to

TPU.

Fig. 4.16(b) shows the energy benefit of our accelerator and GPU over the CPU baseline for

SpMV on matrices from SuiteSparse. For SpMV, our accelerator is 46.4× and 60.1×more energy

efficient than CPU and GPU.

4.7 Related Work

4.7.1 Sparse Storage Formats

Many sparse storage formats have been propose in the literature. CSR (Compressed Sparse

Row), CSC (Compressed Sparse Column) and COO (Co-ordinate) are the most commonly used

74



m133-b3

scircuit

p2p-Gnutella31

offshore

cage12

2cubes_sphere

filter3D

email-Enron

citeseer

cora
wiki-Vote

poisson3Da

geo mean

Benchmarks

10 1

100

101

102

103

Sp
ee

du
p 

ov
er

 C
PU

Tensaurus GPU

(a) Speedup for SpMV

m133-b3

scircuit

p2p-Gnutella31

offshore

cage12

2cubes_sphere

filter3D

email-Enron

citeseer

cora
wiki-Vote

poisson3Da

geo mean

Benchmarks

10 2

10 1

100

101

102

103

E
ne

rg
y 

B
en

ef
it 

ov
er

 C
PU

Tensaurus GPU

(b) Energy Benefit for SpMV

Figure 4.16: Speedup and Energy Benefit of Tensaurus, GPU (cuSPARSE) and Cambricon-X over CPU (Sparse
BLAS) Baseline for SpMV on Sparse Matrices from SuiteSparse and GraphSAGE

sparse storage formats for CPUs. Liu et al. [LWSD17] propose a sparse tensor storage format

F-COO, which is similar to the co-ordinate format and used it for GPUs. CSF [SRSK15] and

Hi-COO [LSV18] are other sparse tensor storage formats that are based on CSR and COO, re-

spectively. OuterSPACE [PBP+18] uses a variant of CSR and CSC formats called CR and CC

for sparse-sparse matrix-matrix multiplication (SpGEMM). For machine learning hardware, re-

searchers have proposed multiple variants of CSR and CSC formats. For example, Cambricon-

X [ZDZ+16] proposes a modification of CSR format where the non-zeros are are compressed and

stored in contiguous memory and index vectors are used to decode the row and column indices.
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EIE [HLM+16] uses a variant of CSC storage format where instead of storing the row indices

they store the number of zeros before a non-zero element. However, since these works focus on

deep learning, especially CNNs, their sparse storage format is specialized for low sparsity (high

density).

4.7.2 Software

TACO [KKC+17] is language and compiler framework to generate high-performance code for

sparse matrix and tensor kernels for CPUs. Kjolstad et al. [KAKA18] introduced workspace opti-

mizations in TACO to implement operand factoring optimizations in tensor kernels. SPLATT [SRSK15,

SK17] introduced a C library implementing SpMTTKRP and SpTTMc with shared memory par-

allelization. Bhaskaran et al. [BHP+17] introduce various techniques to reduce memory usage

and execution time for sparse tensor factorization algorithms. Ballard et al. [BHR18] and Choi et

al. [CLC18] propose methods to perform DMTTKRP and DTTMc on CPU and GPU, respectively.

Blanco et al. [BLD18] described a scalable cloud based sparse tensor factorization algorithm for

distributed tensor factorizations.

4.7.3 Hardware

Srivastava et al. [SRB+19a] propose a language and compilation framework called T2S-Tensor

to generate high performance hardware for dense tensor computations such as GEMM, DMT-

TKRP and DTTMc. Zhang et al. [ZZZ19] design a hardware accelerator for DTTMc. Hegde

et al. [HAMP+19] designed a hardware accelerator called ExTensor for sparse tensor algebra

using the ideas of merge lattice proposed in TACO [KKC+17]. This work, however, does not

accelerate sparse tensor factorizations as they involve more than two operands and their perfor-

mance are significantly effected by operand factoring optimizations. ExTensor also uses signif-

icantly more on-chip storage than Tensaurus (30 MB as compared to 0.5 MB). This allows Ex-

Tensor to read an entire tile of the sparse input tensor on-chip in a streaming manner, avoiding

the need for a special sparse storage format. However, this comes at the cost of area and en-

ergy where ExTensor is 40× larger than Tensaurus for the same technology node. Kanellopoulos

et al. propose a hardware-software cooperative mechanism to accelerate sparse matrix opera-

tions. For SpMM and GEMM, prior works involving ASIC implementations include Cambricon-
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X [ZDZ+16], Cambricon-S [ZDG+18], Cnvlutin [AJH+16], SCNN [PRM+17] [AKM+18], and

OuterSPACE [PBP+18]. Cambricon-X [ZDZ+16] and Cambricon-S [ZDG+18] implement hard-

ware accelerators for SpMM and SpGEMM in CNNs where either the weight matrices or both

weight matrices and neurons are sparse. SCNN [PRM+17] designs a SpGEMM accelerator for

CNNs which can exploit the sparsity in both weights and neurons. OuterSPACE [PBP+18] and [AKM+18]

design accelerator designs for SpGEMM. EIE [HLM+16] proposes the SpMSpV (sparse ma-

trix sparse vector multiplication) accelerator for fully connected layers in CNN and show sig-

nificant performance gains over CPU and GPU. TPU [JYP+17] implemented a 2-d systolic ar-

ray for GEMM. Prior work involving FPGA implementations for sparse-dense and sparse-sparse

matrix-matrix and matrix-vector accelerators include [LXH+19], ESE [HKM+17], [ZP05] and

[FOS+14]. Lu et al. [LXH+19] design a CNN accelerator with sparse weights. ESE [HKM+17]

proposes an FPGA-accelerator for SpMV in LSTMs. Prasanna et al. [ZP05] and Fowers et al. [FOS+14]

propose SpMV accelerators for very sparse matrices.

4.8 Conclusions

In this work, I propose a new sparse storage format which allows accessing sparse data in a vec-

torized manner and co-design a hardware accelerator for sparse and dense tensor factorizations. I

also extract a common computation pattern among different tensor factorization algorithms, which

form the basis for many matrix operations and design a suitable hardware implementation. With

such hardware software co-design I achieve significant speedup and energy benefits over multiple

hardware and software baselines.
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CHAPTER 5
MATRAPTOR: A SPARSE-SPARSE MATRIX

MULTIPLICATION ACCELERATOR BASED ON
ROW-WISE PRODUCT

This chapter explores the hardware acceleration of sparse-sparse matrix-matrix multiplication

(SpGEMM), which is by far the most important sparse-sparse tensor kernel. In this chapter, I

present MatRaptor, a novel SpGEMM accelerator that is high performance and highly resource

efficient. Unlike conventional methods using inner or outer product as the meta operation for ma-

trix multiplication, the approach presented in this chapter is based on the row-wise product, which

offers a better trade-off in terms of data reuse and on-chip memory requirements, and achieves

higher performance for large sparse matrices. I further propose a new hardware-friendly sparse

storage format, which allows parallel compute engines to access the sparse data in a vectorized

and streaming fashion, leading to high utilization of memory bandwidth.

5.1 Introduction

Sparse-sparse matrix-matrix multiplication (SpGEMM) is a key computational primitive in

many important application domains such as graph analytics, machine learning, and scientific

computation. More concretely, SpGEMM is a building block for many graph algorithms such as

graph contraction [GRS08], recursive formulations of all-pairs shortest-paths algorithms [DN07],

peer pressure clustering [Sha07], cycle detection [YZ04], Markov clustering [VD00], triangle

counting [ABG15], and matching algorithms [RV89]. It has also been widely used in scientific

computing such as multigrid interpolation/restriction [BM+00], Schur complement methods in

hybrid linear solvers [YL10], colored intersection searching [KSV06], finite element simulations

based on domain decomposition [HHM12], molecular dynamics [IOM95], and interior point meth-

ods [KGK94].

SpGEMM often operates on very sparse matrices. One such example is the Amazon co-

purchase network [LAH07], which is a graph where each product is represented as a node and

the likelihood of two products being bought together is represented as an edge. This network con-

sists of 400K nodes and 3.2M edges forming an adjacency matrix of 400K × 400K with a density

of 0.002%. With such a high sparsity, the SpGEMM computation becomes highly memory-bound
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and requires effective utilization of memory bandwidth to achieve high performance. Traditionally,

SpGEMM computations have been performed on CPUs and GPUs [NCVK10, DHP02, WZS+14],

both of which have low energy efficiency as they allocate excessive hardware resources to flexibly

support various workloads. Hardware accelerators tackle this energy efficiency problem through

specialization. However, there are three key challenges in designing an accelerator for SpGEMM

computation: (1) The inner product and outer product algorithms, which perform well for dense

matrix multiplication, are not necessarily the ideal algorithms for SpGEMM due to the low densi-

ties of the sparse matrices involved in the computation; (2) The SpGEMM computation is highly

memory-bound and the traditional sparse storage formats such as CSR, CSC and COO perform

random data accesses when used with multiple compute units in parallel; this results in low mem-

ory bandwidth utilization; and (3) The output of SpGEMM is also a sparse matrix for which the

number of non-zeros are not known ahead of the time, and hence contiguous data allocation for

different rows/columns that are being computed in parallel requires synchronization.

In this chapter, I analyze the different dataflows for SpGEMM and compare them in terms of

data reuse and on-chip memory requirements. I argue that a row-wise product approach has the

potential to outperform other approaches for SpGEMM for very sparse matrices. I further propose

a new sparse storage format named cyclic channel sparse row (C2SR), which enables efficient par-

allel accesses to the main memory with multiple channels. Using the row-wise product approach

and the new sparse format, I describe the design of MatRaptor, a highly efficient accelerator ar-

chitecture for SpGEMM. Based on experiments performed on a diverse set of sparse matrices,

MatRaptor can achieve significant performance improvement over alternative solutions based on

CPUs, GPUs, and the state-of-the-art SpGEMM accelerator OuterSPACE [PBP+18].

The key technical contributions of this chapter are as follows:

• I systematically analyze different dataflows for SpGEMM by comparing and contrasting

them against data reuse and on-chip memory requirements. I show that a row-wise prod-

uct approach, which has not been explored in the design of SpGEMM accelerators, has the

potential to outperform the existing approaches.

• I introduce C2SR, a new hardware-friendly sparse storage format that allows different parallel

processing engines (PEs) to access the data in a vectorized and streaming manner leading to

high utilization of the available memory bandwidth.
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• I design a novel SpGEMM accelerator named MatRaptor, which efficiently implements the

row-wise product approach and fully exploits the C2SR format to achieve high performance.

The experiments using gem5 show that MatRaptor is 1.7× faster than OuterSPACE on aver-

age with 12.3× higher energy efficiency. MatRaptor is also 31.3× smaller in terms of area

and consumes 7.2× less power compared to OuterSPACE.

5.2 Analysis of SpGEMM Dataflows
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Parallelism

(a) Inner product (b) Outer product

(c) Row-wise product (d) Column-wise product

Different parallel units
reading and writing same
location (synchronization)

4 index matching operations
but no MAC

Parallelism

Figure 5.1: Four Different Ways of Computing SpGEMM Kernel – (a) Inner product approach; (b) Outer product
approach; (c) Row-wise product approach; and (d) Column-wise product approach. The non-zero elements in the two
input matrices are shown in blue and green colors, the non-zero elements in the output matrix are shown in orange
color, and the elements of the matrices involved in the computation are shown with dark borders.
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In matrix multiplication, since each of the input matrices can be accessed in either a row-major

order or column-major order, there are four possible ways to perform matrix multiplication —

inner product (row times column), outer product (column times row), row-wise product (row times

row), and column-wise product (column times column) as shown in Fig. 5.1. In the following

subsections, I discuss each of these four approaches in terms of the data reuse and their on-chip

memory requirements. I define data reuse as the number of multiply-accumulate (MAC) operations

performed when a single byte of data is read/written from/to the memory. For the sake of simplicity,

I assume that (1) each of the input and the output matrices have dimensions of N×N; (2) both the

input matrices have nnz number of non-zeros; (3) the output matrix has nnz′ number of non-zeros;

and (4) the number of non-zero elements for each row/column are the same and equal to nnz
N for

input matrices and nnz′
N for the output matrix.

5.2.1 Inner Product

This is arguably the most widely-known approach for computing matrix multiplication, where

a dot product is performed between a sparse row from the first matrix and a sparse column from

the second matrix as shown in Eq. (5.1). With this approach, I can parallelize the computation

of multiple dot products across different PEs. Fig. 5.1a shows the inner product approach for

SpGEMM computation and the parallelization strategy.

C[i, j] =
N

∑
k=0

A[i,k]∗B[k, j] (5.1)

This approach reads a row of sparse matrix A and column of sparse matrix B each of which

has nnz
N non-zeros, and performs index matching and MACs. As the number of non-zeros in the

output matrix is nnz′, the probability that such index matching produces a useful output (i.e., any

of the two indices actually matched) is nnz′
N2 . Thus the data reuse for the inner product approach is

O(nnz′/N2

nnz/N ), which is O(nnz′
nnz .

1
N ). Since N can be very large and nnz′ is similar to nnz, the data reuse

of the inner product approach is very low for large matrices. The on-chip memory requirements

for this approach is O(nnz
N ). Since N can be of the order of 100K−10M and nnz

N is of the order of

10−100, as can be seen from Table 4.5 the data reuse for inner product approach is low; however,

the on-chip memory requirements are also low.

Thus the inner product approach has three major disadvantages for SpGEMM:
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1. The two input matrices need to be stored in different formats, one row major and another

column major.

2. It attempts to compute each element of the output matrix. However, in the case of SpGEMM,

the output matrix is typically also sparse, which leads to a significant amount of wasted

computation. For example, in Fig. 5.1 when the inner product is performed between the last

row of matrix A and last column of matrix B, none of the indices match and the output is a

zero.

3. It performs a dot product of two sparse vectors, which is very inefficient since it requires

index matching where a MAC is performed only when the indices of the non-zero elements

from the two vectors match. For example, in Fig. 5.1a the inner product of first row of A and

second column of B requires three index matching operations but performs only one MAC.

5.2.2 Outer Product

With this approach, an outer product is performed between a sparse column of the first matrix

and a sparse row of the second matrix to produce partial results for the entire output matrix as

shown in Eq. (5.2). The outer product approach parallelizes the computation of different outer

products across different PEs. Fig. 5.1b shows the outer product approach and the parallelization

strategy.

C[:, :] =
N

∑
k=0

A[:,k]∗B[k, :] (5.2)

This approach reads a column and a row of the sparse input matrices A and B, each with nnz
N

non-zeros and performs an outer product with (nnz
N )2 MAC operations. Thus the data reuse for

the outer product approach is O(nnz
N ). The on-chip memory requirement for the outer product

approach is O(nnz
N +nnz′), where the first term is the on-chip storage required for rows/columns of

input matrices and the second term is the on-chip requirement for the output matrix. Thus, using

typical ranges of nnz
N from 10-100 and for nnz′ from 100K-10M, the outer product approach reuses

the data read/written from/to the memory 10-100 time. However, it requires an on-chip memory

size of hundreds of mega-bytes.
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The outer product algorithm solves two major problems with the inner product approach by

computing only non-zero entries of the output matrix and not performing any index matching.

However, it has three major disadvantages:

1. The two input matrices still need to be stored in different formats, one column major and

another row major.

2. Multiple PEs produce the partial sums for the entire output matrix, as shown in Fig. 5.1b,

which requires synchronization among them. This limits the scalability of the hardware.

3. For output reuse the partial sums are typically stored on-chip. This requires a large buffer

since the partial sums from the entire output matrix are produced for each outer product. For

example, OuterSPACE [PBP+18], which employs the outer product approach, uses 0.5MB

of on-chip memory (256KB of scratchpads within the PEs, 256KB of L0 caches and 16KB

of victim caches). Yet it still cannot hold all the partial sums on the chip as the size of partial

sums varies from 10-100MB.

5.2.3 Row-Wise Product

In the row-wise product approach (also known as Gustavson’s algorithm [Gus78]), all the non-

zero elements from a single row of matrix A are multiplied with the non-zero entries from the

corresponding rows of matrix B, where the row index of matrix B is determined by the column

index of non-zero values from matrix A. The results are accumulated in the corresponding row of

the output matrix as shown in Eq. (5.3). Multiple rows from the output matrix can be computed

in parallel. Fig. 5.1c illustrates the row-wise product approach and the parallelization strategy.

Fig. 5.2 gives a more concrete example that illustrates the computation of SpGEMM with two PEs

using the row-wise product approach. Here, each of the two PEs reads entire rows of the A and B

matrices and writes entire rows of the output matrix C.

C[i, :] =
N

∑
k=0

A[i,k]∗B[k, :] (5.3)

With this approach, a PE reads a scalar value from matrix A and a row of matrix B with nnz
N

non-zeros and perform an scalar-vector product with (nnz
N ) MAC operations. While the data reuse

is low, the on-chip memory requirement for this approach is only O(nnz
N + nnz′

N ). Here the two terms

represent the on-chip storage required by the non-zeros from a row of B and a row of the output
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matrix, respectively. Thus, using typical ranges of nnz
N and nnz′

N from 10-100, the row-wise product

approach only requires an on-chip buffer size of a few kilo-bytes. The key advantages of using the

row-wise product are as follows:

• Consistent Formatting: The row-wise product accesses both the input matrices and the

output matrix in row-major order that allows using the same format for the inputs and outputs.

Since many algorithms such as graph contractions require a chain of matrix multiplications

having a consistent format in essential.

• Elimination of Index Matching: The core computation in this approach is the scalar-vector

product; hence it computes only non-zero entries of the output matrix and does not require

inefficient index matching of the inputs as in the case of the inner product approach.

• Elimination of Synchronization: This approach allows multiple PEs to compute different

rows of the sparse output matrix and hence there is no need to synchronize the reads and

writes to the output memory.

• Low On-Chip Memory Requirements Since a single output row is computed at a time, the

partial sums for only a single output row needs to be stored on-chip. The required output

buffer size is in the order of O(nnz′
N ). This is contrast with the outer product approach, which

requires the entire output matrix to be stored on chip with a buffer size of O(nnz′). As N

is typically very large (on the order of 100K–10M), the on-chip memory savings from the

row-wise product approach over outer product approach are significant.

The row-wise product approach also has some disadvantages: (a) on-chip data-reuse for for

matrix B is low as compared to outer product; and (b) just like other approaches row-wise

product needs to cope with the load imbalance issue among multiple PEs. The low on-chip

data reuse has more impact on the performance when the density of matrix B is high. This,

however, is not the case with most of the SpGEMM algorithms where both the operand

matrices are highly sparse. The load imbalance issue can mostly be solved using a round-

robin row allocation strategy discussed in Section 5.4.1.

84



a00 a02 a03

a13

a21

a31 a32

b00 b03

b12

b20 b22

b30 b31 b33

c00 c01 c02 c03

c10 c11 c13

c22

c30 c32

a00 b00 c000

a02 b20 c200

a03 b30 c300

X

X

X

=

=

=

b22 c202=

b31

b33

c301

c303

=

=

c003b03

a21 b12 c122X =

a13 b30 c310

a31 b12

X

X

=

= c132

c311b31

c313b33

a32 b20 c230X =

c232b22

c000 + c200 + c300

c003 + c303

c132 + c232

x

=

A
PE 0 PE 1

B

C

Figure 5.2: Parallelization of the Row-Wise Product on two PEs – PE0 is assigned to rows 0 and 2 of input matrix
A and computes rows 0 and 2 of output matrix C; PE1 is assigned rows 1 and 3 of the matrix A and computes rows 1
and 3 of the matrix C; the matrix B is shared between the two PEs.

5.2.4 Column-Wise Product

In the column-wise product approach, all the non-zero elements from a single column of matrix

B are multiplied with the non-zero entries from the corresponding columns of matrix A and the

results are accumulated in the corresponding column of the output matrix as shown in Eq. (5.4).

Fig. 5.1d shows the column-wise product approach and the parallelization strategy.

C[:, j] =
N

∑
k=0

A[:,k]∗B[k, j] (5.4)

This approach is similar to the row-wise product approach and has the same data reuse and on-

chip memory requirements as the row-wise product. The rest of the chapter focuses on row-wise

product approach for SpGEMM as it has low on-chip memory requirements and does not lose

much in terms of data reuse compared to the outer product approach, especially for very sparse

large matrices.

5.3 Sparse Matrix Format

By using the row-wise product, one can achieve high compute utilization and low on-chip

storage requirements. In this section, I further propose a new hardware-friendly sparse storage

85



format to achieve high utilization of the off-chip memory bandwidth, which is essential for high-

performance SpGEMM computation. For scalability and high performance, the on/off-chip mem-

ories are often divided into smaller memory banks to achieve lower memory latency and higher

bandwidth. I abstractly represent such memory banks as channels in this discussion and assume

that data is interleaved in these channels in a cyclic manner. These channels can be later mapped

to different DRAM channels or scratchpad banks.

5.3.1 Limitations of the Traditional CSR Format

Fig. 5.3 shows the same sparse matrix A as in Fig. 5.2 using its dense form (Fig. 5.3a) and the

conventional compressed sparse row (CSR) format (Fig. 5.3b). Here the CSR format consists of

(1) an array of (value, column id) pairs for the non-zero elements in the matrix and (2) an array of

row indices, where the ith index points to the first non-zero element in the ith row of the matrix.

In Fig. 5.3, I illustrate how the (value, column id) array can be mapped to a memory with two

channels. Fig. 5.3e shows how two PEs read the data from matrix A and Fig. 5.4 shows how

these PEs write the output matrix C using the row-wise product approach depicted in Fig. 5.2. I

assume that the channel interleaving is 4 elements and each PE sends 4-element wide requests to

the memory. As shown in Fig. 5.3e and Fig. 5.4, the CSR format has several major limitations:

1. A vectorized memory request can be split among different channels, leading to non-vectorized

memory access within each channel.

2. Multiple PEs may send memory read requests to the same channel resulting in memory

channel conflicts.

3. A vectorized memory read can read wasteful data that does not belong to that PE.

4. For writing the output matrix, each PE writing the ith row to the memory needs to wait for all

the PEs writing rows < i to finish, which leads to synchronization issues.

5.3.2 The Proposed C2SR Format

To overcome the aforementioned limitations, I propose a new sparse storage called channel

cyclic sparse row (C2SR), where each row is assigned a fixed channel in a cyclic manner. Fig. 5.3c

shows the cyclic assignment of rows to the channels and Fig. 5.3d shows the corresponding C2SR
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Figure 5.3: Comparison of Sparse Storage Formats – (a) shows the sparse matrix A in its dense representation;
(b) shows matrix A stored in the CSR storage format and assignment of non-zero elements to two channels using
4-element channel interleaving; (c) shows the same sparse matrix A in dense representation where each row is mapped
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Figure 5.4: Comparison of Sparse Storage Formats CSR and C2SR for Output Matrix

format. This new format consists of an array of (row length, row pointer) pairs and an array

of (value, column id) pairs. The (value, column id) array stores the non-zero elements from the

sparse matrix along with their column ids. The ithentry in the (row length, row pointer) array stores

the number of non-zeros in the ith row and the pointer to the first non-zero element from that row

in the (value, column id) array. To store a sparse matrix in C2SR format, first each row is assigned

to a fixed channel in a cyclic manner and then for each channel all non-zero elements are written

serially to the memory locations corresponding to that channel in the (value, column id) array. For

example in Fig. 5.3c, rows 0 and 2 are assigned to channel 0 and hence their non-zero elements

are stored at the locations corresponding to channel 0 in the (value, column id) array in Fig. 5.3d.

The reading of matrix A and writing to output matrix C are shown in Fig. 5.3e and 5.4. The C2SR

storage format has the following three key properties:

• No Channel Conflicts: Each row is assigned to a unique channel, which means that the rows

mapped to different channels do not have memory channel conflicts and can be accessed in

parallel. This is in contrast to CSR format, where different rows are not necessarily mapped

to distinct channels and can result in memory channel conflicts.

• Vectorized and Streaming Memory Reads: All the rows mapped to a channel are stored

sequentially in that channel, resulting in high spatial locality when accessing these rows in a

row major order.

88



• Parallel Writes to the Output Matrix: The rows of the sparse matrix mapped to a channel

can be written to that channel without requiring any information about the rows mapped to

other channels. For example in Fig. 5.4, with C2SR format PE0 and PE1 do not wait for

each other and can write to the results to their corresponding channel in parallel. While using

CSR format, PE1 needs to wait for PE0 to finish so that it can determine the next available

memory location to write the output row.

The first two properties result in high inter-channel memory bandwidth since all the channels

can work in parallel and high intra-channel memory bandwidth as the data accesses are done se-

quentially within a channel. These two properties help C2SR achieve a bandwidth very close to the

peak memory bandwidth, which is essential for the memory bound SpGEMM kernel. The third

property allows multiple PEs to write the output elements without requiring any synchronization

and thus leads to better utilization of the PEs.

5.4 MatRaptor Architecture

This section details the implementation of the row-wise product approach for SpGEMM, which

improves over other conventional SpGEMM methods through: (1) consistent formatting, (2) elim-

ination of index matching, (3) elimination of synchronization, and (4) low on-chip memory re-

quirements. In Section 5.4.1, I first describe the two major operations in the row-wise product im-

plementation; multiplication and merge, where for merge operation an efficient sorting technique

using queues is introduced. In Section 5.4.2, I provide the details of the MatRaptor accelerator

architecture, with a focus on describing the operation of the compute PE.

5.4.1 Row-wise Product Implementation

An important consideration for sparse kernels such as SpGEMM is load balancing among the

PEs. Many real-world sparse matrices follow the power-law distribution, in which some of the rows

can be completely dense while others may be almost empty. This can result in load balancing issues

in the cases when: (i) different PEs work in lock step, meaning all the PEs finish processing one

row each before starting to process the next row; and (ii) the rows of a sparse matrix mapped to one

PE have significantly more non-zero elements than the number of non-zeros in the rows mapped to
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Figure 5.5: Illustration of Multiply and Merge Operations Involved in Computing the Results for a Single Row
of the Output Matrix – Phase I corresponds to the cycles when the multiplications are performed and the result of
the multiplication is merged with the (data,col id) values in one of the queues; and Phase II corresponds to the cycles
when the (data,col id) values in different queues are merged together and streamed out to the DRAM.

a different PE. MatRaptor solves (i) by allowing all the PEs to work completely asynchronously.

Such asynchronous execution is made possible by the C2SR format, which partitions the address

space of the output matrix between different PEs and allows the PEs to independently produce the

results of the output matrix. MatRaptor tackles (ii) by doing a round robin allocation of rows to

different PEs. This effectively ensures that for the sparse matrices with few high-density regions,

the non-zero elements in these regions are approximately uniformly split among different PEs.

Fig. 5.2 shows the parallelization of SpGEMM using the row-wise product approach for two

PEs. Here, rows 0 and 2 of the input matrix A are assigned to PE0, which is responsible for

computing rows 0 and 2 of output matrix C. Rows 1 and 3 of the input matrix A are assigned
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to PE1, which is responsible for computing the corresponding rows of the output matrix C. The

input matrix B is shared between both PEs. The PEs read the input matrices A and B stored in the

memory in C2SR format, perform the SpGEMM computation, and write the non-zero elements of

the output matrix C to the memory using the same C2SR format.

The SpGEMM computation within a PE consists of two major operations: (1) multiply op-

erations, which correspond to the scalar-vector multiplications shown in Fig. 5.5; and (2) merge

operations, which involves sorting and accumulations. From now onwards, I will use the follow-

ing notations: (1) The non-zero elements from the input matrices A and B will be represented as

aik and bk j where the subscripts represent the row index and the column index of the matrix ele-

ments, respectively; (2) A non-zero element of the output matrix will be represented as either ck
i j or

ck0,k1,...km
i j where ck

i j = aik ∗bk j and ck0,k1,...km
i j = ck0

i j +ck1
i j + ...+ckm

i j . The subscripts i and j represent

the row index and the column index of the non-zero element in matrix C.

Multiply Operations. For the multiply operations, a PE reads non-zero elements aik from

the ith row of matrix A assigned to it. For each aik, it then reads all the non-zero elements

{bk j1,bk j2 ,bk j3, ...} from the kth row of matrix B and performs a scalar-vector multiplication to

produce the partial results {ck
i j1,c

k
i j2,c

k
i j3, ...} for the ith row of matrix C. For example in Fig. 5.2,

PE0 reads the non-zero element a00 and the 0th of matrix B and performs scalar-vector multiplica-

tion on {b00,b03} to produce the partial results {c0
00,c

0
03} for the 0th row of matrix C.

Merge Operations. The partial result vectors for the ith row of the output matrix C need to be

merged to produce the final results. This requires sorting all the partial sum vectors with respect to

their column indices j and then accumulating the partial results that have the same column index.

One naïve solution is to collect all the partial sum vectors and sort them using sorting hardware.

However, such sorting hardware would be inefficient as it would not make use of the property that

each of the partial sum vectors is already sorted with respect to the column indices.

A better approach to solve such a sorting problem is by using multiple queues. In this approach,

each PE has Q > 2 queues, where each queue maintains the invariant that its entries are always

sorted with respect to column indices. Out of all the queues, all except one queue act as primary

queues while the remaining one acts as a helper queue. For each row of the output matrix, the

first (Q−1) partial sum vectors are written to one of the primary queues such that there is only

one partial sum vector per queue. After the first (Q−1) partial result vectors, each partial result

vector is merged with the queue with the least number of entries and the results are written to the
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helper queue. While merging, if the column indices in the partial result vector and the top of the

queue match, the entry is removed from both the partial result vector and the queue and their sum

is pushed to the helper queue. If the column indices do not match, then the one (either partial sum

vector or queue) with the smaller column index is popped and the value is pushed to the helper

queue. After the merge is complete, the helper queue is swapped with the primary queue involved

in the merge, and the primary queue becomes the new helper queue. This process continues until

the row index of the non-zero element from A changes.

Fig. 5.5 shows the merge part of the computation with three queues. Initially, the first two

queues are the primary ones and the last is a helper, and the partial result vectors {c0
00,c

0
03} and

{c2
00,c

2
02} are inserted into queues 0 and 1. Then the partial sum vector {c3

00,c
3
01,c

3
03} is merged

with queue 0 as it has the least number of entries and the results are written to the helper queue.

When the row index of the non-zero element from A changes, then the entries in all the queues

need to be merged and written back to the main memory. To merge the data in all the queues,

the queue with the smallest column index is popped and the data is streamed to the main memory.

In the case when multiple queues have the same minimum column index at the top of the queue,

all such queues are popped and the sum of the popped elements is streamed to the main memory,

as shown in Fig. 5.5. After the last non-zero element from the first row of matrix A is processed,

queue 0 and queue 1 are merged and the results are streamed to the DRAM.

5.4.2 Architectural Details of MatRaptor

Fig. 5.6a shows the micro-architecture of MatRaptor. It consists of Sparse Matrix A Loaders

(SpAL), Sparse Matrix B Loaders (SpBL), and the compute PEs. SpALs, SpBLs, and the PEs

implement a one-dimensional systolic array with N rows. The rows of the input matrix A are

assigned to the rows of the systolic array in a round-robin fashion.

Each SpAL reads the non-zero elements aik from a row of matrix A and sends it along with

its row and column indices to SpBL. SpBL uses the column index k received from SpAL to fetch

the non-zero elements from kth row of matrix B (i.e., bk j), and sends aik, bk j, i and j to the main

compute PEs. The PE performs multiplication and merge computations where it multiplies aik

and bk j and merges the results and writes them to the main memory. The following subsections

describe each component of MatRaptor micro-architecture in more detail.
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Figure 5.6: MatRaptor Architecture – (a) shows the MatRaptor microarchitecture consisting of Sparse A Load-
ers (SpALs), Sparse B Loaders (SpBLs), Processing Elements (PEs), system crossbar and high-bandwidth memory
(HBM); (b) shows the microarchitecture of a single PE consisting of multpliers, adders, comparator and queues on the
left performing phase I of the multiply and merge operations, and the queues on the right, adder tree and minimum
column index logic performing phase II of the merge operations.
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SpAL

The SpAL is configured with the number of rows N in the sparse matrix A and the pointer to

the beginning of the arrays containing the (row length, row pointer) pairs in the C2SR storage of

matrix A. SpAL first sends a memory read request to fetch the (row length, row pointer) pair for

a row of matrix A. Then it sends multiple memory read requests using the row pointer to fetch

the (value, column id) pairs in that row. To achieve high memory bandwidth, SpAL sends wide

memory read requests for (value, column id) pairs such that size of the memory request is the

same as the channel interleaving size and thus implements vectorized memory reads. SpAL also

implements outstanding requests and responses queue to avoid stalling for the memory responses

and thus is able send and receive memory requests and responses in a pipelined manner. Once a

(value, column id) pair is read from the memory, SpAL sends the values along with its row and

column indices i.e. (aik, i, k) to SpBL.

SpBL

The SpBL receives (aik, i, k) values from the SpAL and sends a memory read request for the

(row length, row pointer) pair in the kth row of matrix B. It then uses the row pointer to send mul-

tiple memory read requests for the (value, column id) pairs in kth row of the B matrix. Similar

to SpAL, SpBL also loads the (value, column id) pairs in vectorized streaming manner and main-

tains outstanding requests and responses queue. When a (value, column id) pair is read from the

memory, SpBL sends the values aik, bk j, i and j to the PE.

PEs

Each PE receives (aik,bk j, i, j) values from the SpBL and performs the multiply and merge

operations. Fig. 5.6b shows the design of a single PE. It consists of a multiplier to calculate

aik times bk j and produce the partial result ck
i j. It also consists of two sets of Q queues, where

each queue contains (data,col id) pairs. The reason behind having two set of queues is that the

merge operations in Fig. 5.5 can be divided into two phases: Phase I, when the multiplications are

performed and the result of the multiplication is merged with the (data,col id) values in one of the

queues; and Phase II, when all the partial sums for a single output row have been written to one of
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the queues and the (data,col id) values in different queues are merged together and streamed out

to the DRAM.

Since Phase II stalls the multiply operations, this can lead to poor utilization of the multipliers.

With two sets of queues, when Phase I is completed, the multipliers can start computing the results

for the next output row in a different set of queues while the results from the current queues are

merged and written to the DRAM. With this kind of double buffering, Phase I and Phase II can be

performed in parallel, which results in higher compute utilization.

All the queues within a set are connected to a multiplexer, which is used to select the queue

with the least number of entries. The queues within a set are also connected to an adder tree and

minimum column index selection logic. The minimum column index logic outputs a Q-bit signal

where each bit represents whether the corresponding queue has the minimum column index. The

output of the minimum column index logic is then sent to the controller, which configures the

adder tree to accumulate the data values from the selected queues. The controller also pops an

element from each of these queues. Fig. 5.6b shows the PE when the set of the queues on the left

are involved in Phase I computation and the set of queues on the right are involved in Phase II of

the computation. The inactive components from both the sets are shown with gray color and dotted

lines.

If the number of rows of the systolic array is an integer multiple of the number of channels,

then each row of the systolic array will read/write the elements of matrix A/C from/to a unique

channel; however, multiple rows of the systolic array can access the data from the same channel.

If the number of channels is an integer multiple of the number of rows of the systolic array, then

no two rows of the systolic array will share a channel while a single row of systolic array will be

assigned more than one channel. For the cases when the number of rows in the systolic array and

the number of channels are the same, each row of the systolic array is assigned one channel.

5.5 Experimental Setup

5.5.1 Simulation Infrastructure

To evaluate the performance of our accelerator, I model a MatRaptor architecture consisting

of SpALs, SpBLs, PEs, and HBM using the gem5 simulator [BBB+11]. I implement the systolic
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array with 8 rows to match the number of channels in the HBM. Each PE consists of 10 queues

that are implemented as SRAMs and where each queue is 8KB in size. The memory request and

response queues are implemented with 64 entries. For HBM, I used the gem5 memory model

for HBM, which supports up to 8 128-bit physical channels, runs at 1GHz clock frequency and

provides a peak memory bandwidth of 128 GB/s.

We attach MatRaptor to a host CPU as a co-processor where both the CPU and MatRaptor share

the same off-chip memory. For the host CPU we use the RISCV minor CPU model in gem5. We

add support for custom instructions to send/receive messages between the CPU and MatRaptor in

the CPU model and the RISCV gcc compiler. When the CPU executes these custom instructions in

the program binary, it sends the size of matrices and the pointer to the sparse data to the accelerator,

which then performs the SpGEMM computation.

5.5.2 Measurements

I implemented the PEs in RTL using PyMTL [LZB14], translated them to Verilog, synthesized

them using the Synopsys Design Compiler for synthesis and Cadence Innovus for place-and-route,

targeting a TSMC 28nm library. I modeled the latency, area and power of the queues in the merge

logic and outstanding request and responses queues using CACTI 7.0 [MBJ09]. For the SpALs

and SpBLs, since the area and power are dominated by outstanding memory requests and response

queues, I use the area and power numbers for these queues from CACTI and add 10% overhead

for the control logic. Table 5.1 shows the area and power breakdown of different components of

the design. For HBM I use the energy numbers from [Shi16]. Overall the area of our accelerator is

2.2mm2, which is 31.3× smaller than the area of OuterSPACE (70.2mm2 after technology scaling).

The main reason behind this is our PEs and on-chip memory are much simpler than the PEs,

scratchpads and caches in OuterSPACE.

5.5.3 Baselines

I compare our design against three baselines: CPU, GPU, and OuterSPACE [PBP+18].

CPU: I use the Intel Math Kernel Library (MKL) to evaluate the benchmarks on both single thread

and multiple threads (12 threads) of Intel Xeon E5-2699 v4 server-class CPU, which is manufac-

tured using 14nm technology node, runs at 2.20 GHz and has 32 KB L1 cache, 256 KB L2 cache,
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Table 5.1: Area and Power Breakdown of MatRaptor

Component Area (mm2) % Power (mW) %

PE 1.981 88.44 % 1050.57 78.46 %
– Logic 0.080 3.61 % 43.08 3.22 %
– Sorting Queues 1.901 84.83 % 1007.49 75.24 %

SpAL 0.129 5.78 % 144.15 10.77 %

SpBL 0.129 5.78 % 144.15 10.77 %

Total 2.241 100 % 1338.89 100 %

and 55 MB of L3 cache. We kept the number of CPU threads in the multi-threaded version the

same as the one used in OuterSPACE [PBP+18] for their CPU baseline. The CPU uses DDR4

with 4 DRAM channels and supports a peak memory bandwidth of 76.8 GB/s. Since, SpGEMM is

primarily memory-bound and the Intel CPU supports a peak memory bandwidth of only 76.8 GB/s

while HBM used for MatRaptor has a peak bandwidth of 128 GB/s, we also scale the performance

and energy efficiency of the CPU accordingly to 128 GB/s for comparison purposes. For energy

estimation of CPU and DRAM, we use the energy numbers from McPAT [LAS+09] and [Bal14].

GPU: I use cuSPARSE [NCVK10] to evaluate the benchmarks on a modern GPU NVIDIA Titan

Xp, which has GDDR5x DRAM with a peak bandwidth of 547.6 GB/s and a peak 32-bit perfor-

mance of 12.15 TFLOP/s. I use CUDA 9.1 for programming the GPU. For power estimation, I use

the TDP number from the GPU datasheet.

Accelerator: I also compare our work against OuterSPACE, the state-of-the-art SpGEMM ac-

celerator, which uses the outer product approach. I obtained the performance numbers for all

benchmarks from the authors of OuterSPACE and used those numbers for comparison. For energy

comparisons, I used the power numbers from [PBP+18] which are in 32nm technology node and

scale them to 28nm.

5.5.4 Technology Node Scaling

We scale the energy numbers for all these baselines to 28nm technology node. The dynamic

power can be estimated as α fCV 2
dd , where α is the switching activity, f is the clock frequency, C

is the total capacitance and Vdd is the supply voltage. As α remains the same between technology

nodes, capacitance C scales proportional to the square of Contacted Gate Poly Pitch (CPP) and

Vdd is different for different technology nodes, we use the ratio of the square of CPP as a scaling
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factor for C and the ratio of Vdd to scale the power and energy numbers. We obtain the CPP and

Vdd values for different technology nodes from their technical specifications [tecd, tecc, tecb, teca].

Table 5.2: Matrices from SuiteSparse [DH11] with Their Dimensions, Number of Non-Zeros (nnz), Density and
Problem Domain

Matrix Short name Dim nnz nnz
N Density Domain

web-Google wg 916K × 916K 5.1M 5.6 6.1e-6 Web Graph
mario002 m2 390K × 390K 2.1M 5.4 1.3e-5 2D/2D problem
amazon0312 az 401K × 401K 3.2M 8.0 1.9e-5 Copurchase network
m133-b3 mb 200K × 200K 801K 4.0 2.0e-5 Combinatorics
scircuit sc 171K × 171K 959K 5.6 3.2e-5 Circuit simulation
p2pGnutella31 pg 63K × 63K 148K 2.4 3.7e-5 p2p network
offshore of 260K × 260K 4.2M 16.3 6.2e-5 EM Problem
cage12 cg 130K × 130K 2.0M 15.6 1.1e-4 Weighted graph
2cubes-sphere cs 101K × 101K 1.6M 16.2 1.5e-4 EM Problem
filter3D f3 106K × 106K 2.7M 25.4 2.4e-4 Reduction problem
emailEnron ee 36.7K × 36.7K 368K 10.0 2.7e-4 Email network
ca-CondMat cc 23K × 23K 187K 8.1 3.5e-4 Condensed Matter
wikiVote wv 8.3K × 8.3K 104K 12.5 1.5e-3 Wikipedia network
poisson3Da p3 14K × 14K 353K 26.1 1.8e-3 Fluid Dynamics

5.5.5 Datasets

For benchmarks, I used the same matrices as in OuterSPACE [PBP+18], which are taken from

SuiteSparse [DH11] as shown in Table 5.2. Since OuterSPACE evaluates the performance of

SpGEMM by multiplying a sparse matrix with itself (C = A×A), I used the same approach for

our evaluation to perform a fair comparison. However, since many of the real-world applications

such as graph contractions involve the sparse matrix multiplication of two different matrices, I

did a performance evaluation by using different combinations of A and B matrices from Table 5.2.

For this, I selected the top-left 10K × 10K submatrices from all the matrices in Table 5.2 so that

the two matrices have same size but different sparsity structure representative of the real matrices.

This technique has been adopted from prior work on characterizing SpGEMM performance on

GPUs [KTH+17].
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5.6 Evaluation

5.6.1 Bandwidth Utilization

To compare the bandwidth utilization of CSR and C2SR I simulate 2, 4 and 8 PEs reading a

sparse matrix from the memory in a streaming fashion. For CSR, I assume that each PE reads

8-byte data elements from the memory to avoid sending vectorized memory requests that map to

different channels and cause memory alignment problem. For C2SR, each PE sends a 64-byte

wide streaming memory requests. For all the simulations I assume the number of PEs to be the

same as the number of DRAM channels. Fig. 5.7 shows the achieved bandwidth with CSR and

C2SR formats. As it can be seen from the figure, the achieved bandwidth from C2SR format is

significantly higher than the achieved bandwidth from CSR and is also close to the theoretical

peak memory bandwidth.
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Figure 5.7: Achieved Memory Bandwidth with CSR and C2SR – The number of PEs is assumed to be same as the
number of channels.

5.6.2 Roofline Evaluation

Figure 5.8 shows the throughput of SpGEMM under the roofline [WWP09] of MatRaptor. The

x-axis shows operation intensity, which is number of operations (multiply and add) performed for

each byte of data accessed from the off-chip memory. The y-axis shows the performance in GOP/s.

The horizontal line towards the right of the plot shows the peak attainable performance from the

design when the operation intensity is high (kernel is compute bound) and the inclined line (with

slope 1) towards the left shows the peak attainable performance when the operation intensity is
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Figure 5.8: Performance of SpGEMM Under the Roofline of MatRaptor for A×A

low (kernel is memory bound). The point where these two lines intersect is called the knee point.

The intercept of the slanted line (value of throughput for operation intensity of 1) represents the

peak memory bandwidth (in GB/s). The gap between the roofline and the achieved performance of

a kernel indicates the inefficiencies within the hardware and the algorithm. The MatRaptor design

consists of 8 PEs, each with one MAC unit and hence the accelerator has 8× 2 = 16 multipliers

and adders. Since I simulate the accelerator design for a 2GHz clock frequency the peak attainable

throughput is 16×2 = 32 GOP/s. For peak memory bandwidth, I use the peak bandwidth of HBM,

which is 128 GB/s.

Fig. 5.8 shows the achieved throughput for SpGEMM for A× A computation for all the matrices

in Table 5.2. It can be seen from the roofline, the throughput for each of the benchmark is very close

to the peak performance and all the benchmarks lie in the memory bound region. The gap between

the peak performance and the attained performance is due to the memory accesses to the second

input matrix. As in the row-wise product approach only the first input matrix and the output matrix

are partitioned among different PEs while the second input matrix is shared between different PEs.

This results in memory channel conflicts and lowers the achieved memory bandwidth.
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Figure 5.9: Speedup for A×A over CPU – CPU-1T = single-thread CPU; CPU-1T-BW = single-thread CPU with
bandwidth normalization; CPU-12T = CPU with 12 threads; CPU-1T-BW = CPU with 12 threads and bandwidth
normalization; GPU; GPU-BW = GPU with bandwidth normalization; OuterSPACE and MatRaptor. The dotted line
indicates the CPU-1T baseline in both plots.

5.6.3 Performance Evaluation

Fig. 5.9(a) shows the performance of CPU (single-/multi-threaded and without/with bandwidth

normalization), GPU (without/with bandwidth normalization), OuterSPACE [PBP+18] and Ma-

tRaptor over the single-threaded CPU baseline for A × A SpGEMM computation. MatRaptor

outperforms CPU and GPU for all benchmarks. Compared to OuterSPACE the performance of

MatRaptor is better for all the benchmarks except Wiki-Vote and Email-Enron, for which the per-

formance of the two are very similar. The main reason behind this is that these matrices have

small sizes compared to other matrices and hence the on-chip memory for the output matrix

in OuterSPACE is sufficient to store the partial results, which results in similar performance of

OuterSPACE and MatRaptor. In terms of geometric mean speedup, MatRaptor achieves 158.7×,

95.2×, 16.5×, 9.9×, 6.9×, 29.5 and 1.7× speedup over single-threaded CPU without and with
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Figure 5.10: Speedup of MatRaptor over GPU-CuSPARSE for A×B – A and B are top-left 10K×10K tiles of
different matrices from the dataset.

bandwidth normalization, multi-threaded CPU without and with bandwidth normalization, GPU

without and with bandwidth normalization, and OuterSPACE, respectively.

Fig. 5.10(a) shows the speedup of MatRaptor over GPU with bandwidth normalization for A

× B SpGEMM computation. It can be seen from these figures that for GPU the performance of

MatRaptor is better in all the cases. Overall, MatRaptor achieves 27.8× speedup over GPU with

bandwidth normalization for A × B computation.

5.6.4 Energy

Fig. 5.9(b) shows the energy benefit of CPU (single-/multi-threaded and without/with band-

width normalization), GPU (without/with bandwidth normalization), OuterSPACE [PBP+18] and

MatRaptor over the single-threaded CPU baseline for A × A SpGEMM computation. In terms of

geometric mean energy benefit, MatRaptor achieves 495.9×, 297.6×, 551.5×, 330.9×, 574.7×,

2458.9× and 12.3× energy benefit over single-threaded CPU without and with bandwidth normal-

ization, multi-threaded CPU without and with bandwidth normalization, GPU without and with

bandwidth normalization, and OuterSPACE, respectively.

Fig. 5.10(b) show the energy benefit of MatRaptor over GPU with bandwidth normalization for

A × B SpGEMM computation. Overall MatRaptor achieves 1815.9× energy improvement over

GPU.
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Figure 5.11: Load Imbalance — measured as the ratio of the maximum and minimum number of non-zeros of matrix
A assigned to the PEs.

5.6.5 Load Imbalance

To measure the load imbalance due to the power-law distribution of the sparse matrices as

discussed in Section 5.4.1, we determine the total number of non-zeros of matrix A assigned to

each PE by C2SR format and plot the ratio of maximum and minimum number of non-zeros in

these PEs. The minimum value of such ratio is 1, which means no load imbalance and a higher

ratio means a higher load imbalance. Fig. 5.11 shows the load imbalance; except for wv and ee

the load imbalance for all the benchmarks is less than 5%. For wv and ee the load imbalance is

higher because these matrices are small and thus a round-robin row assignment to PEs is not very

effective.

5.7 Discussion on Sparse Format

The current implementation assumes that the number of virtual channels used to create C2SR

matches the number of physical channels in the DRAM, which results in highly efficient SpGEMM

processing. To make the sparse format portable across different platforms, the sparse matrix can

be stored in CSR format and converted to C2SR (or vice versa) by a target-specific software library

or dedicated logic in the accelerator. The complexity of such conversion is O(nnz) which is much

lower than that of SpGEMM O(nnz*nnz/N).
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More importantly, the cost of format conversion gets amortized due to: (1) In SpGEMM, the

rows of matrix B are read multiple times while for the format conversion they are read only once;

(2) For algorithms like local graph clustering, the same sparse matrix is reused multiple times; (3)

Many other algorithms such as graph contractions perform a chain of matrix multiplications and

thus the output matrix becomes the input of another SpGEMM without requiring additional format

conversion.

To evaluate the performance overhead of CSR to C2SR conversion and vice versa, we designed

a simple hardware unit that reads the sparse matrix in CSR format and stores it back to memory

in C2SR. According to our results, the format conversion takes on average 12% of the SpGEMM

execution time on MatRaptor.

5.8 Related Work

5.8.1 Sparse Storage Formats

Many sparse storage formats have been proposed in the literature. CSR (Compressed Sparse

Row), CSC (Compressed Sparse Column) and COO (Co-ordinate) are the most commonly used

sparse storage formats for CPUs. Liu et al. [LWSD17] proposes a sparse tensor storage format

F-COO, which is similar to the co-ordinate format and used it for GPUs. CSF [SRSK15] and

Hi-COO [LSV18] are other sparse tensor storage formats that are based on CSR and COO, re-

spectively. For machine learning hardware, researchers have proposed multiple variants of CSR

and CSC formats. For example, Cambricon-X [ZDZ+16] introduce a modification of CSR format

where the non-zeros are are compressed and stored in contiguous memory and index vectors are

used to decode the row and column indices. EIE [HLM+16] uses a variant of the CSC storage

format where instead of storing the row indices they store the number of zeros before a non-zero

element. However, since these works focus on deep learning, especially CNNs, their sparse stor-

age format is specialized for low sparsity (high density). For SpGEMM involving matrices with

high sparsity, OuterSPACE [PBP+18] uses a variant of CSR and CSC formats called CR and CC.

However, to solve the issues related to channel conflicts and memory misalignment, it uses caches

instead to directly accessing the DRAM from the hardware and thus spends 18× more area for

on-chip memory compare to MatRaptor. The area of the hardware is important especially when
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using HBM since the hardware is placed on logic die of HBM which has limited number of tran-

sistors. Fowers et al. [FOS+14] propose a sparse storage format called compressed interleaved

sparse row (CISR), which also maps different PEs to different DRAM channels for sparse matrix

dense vector multiplication (SpMV). However, this format can only be used for the input matrices

and not for the output matrix as generating the output in this format requires information about all

the non-zero elements in the output matrix.

5.8.2 CPU/GPU Acceleration

Akbudak et al. [AA17] design hypergraph and bipartite graph models for 1D row-wise parti-

tioning of matrix A in SpGEMM to evenly partition the work across threads. Saule et al. [SKÇ13]

investigate the performance of the Xeon Phi coprocessor for SpMV computation. Sulatycke et

al. [SG98] propose a sequential cache-efficient algorithm and illustrated high performance than ex-

isting algorithms for sparse matrix multiplication for CPUs. The works involving GPU acceleration

of SpGEMM computation include [DOB15,GHS+15,LV14,MIK12]. Kiran et al. [MIK12] explore

the load-balancing problem that only considers the band matrices. Weifeng and Brian [LV14] ap-

ply the techniques such as GPU merge path algorithm and memory pre-allocation to improve the

performance and the storage issue. Felix et al. [GHS+15] reduce the overhead of memory access

by merging several sparse rows using the main kernel. Steven et al. [DOB15] decompose the

SpGEMM operations and leverage bandwidth saving operations like layered graph model. They

also perform the SpGEMM in a row-wise product method to balance the workload and improve

the performance.

5.8.3 Custom Accelerators

For SpGEMM, prior works involving FPGA implementations for sparse-dense and sparse-

sparse matrix-matrix and matrix-vector accelerators include [LXH+19], ESE [HKM+17], [ZP05]

and [FOS+14]. Lu et al. [LXH+19] proposes a CNN accelerator with sparse weights. ESE [HKM+17]

proposes an FPGA-accelerator for SpMV in LSTMs. Prasanna et al. [ZP05] and Fowers et al. [FOS+14]

designs SpMV accelerators for very sparse matrices. Lin et al. [LWS13] proposed an FPGA-based

architecture for sparse matrix-matrix multiplication.
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Prior works involving ASIC implementations include Cambricon-S [ZDG+18], Cnvlutin [AJH+16],

SCNN [PRM+17], [AKM+18], OuterSPACE [PBP+18] and ExTensor [HAMP+19]. Cambricon-

S [ZDG+18] implements hardware accelerator for SpGEMM in CNNs where both weight matrices

and neurons are sparse. SCNN [PRM+17] proposes a SpGEMM accelerator for CNNs which can

also exploit the sparsity in both weights and neurons. Anders et al. [AKM+18] designs accelerator

designs for SpGEMM. EIE [HLM+16] proposes SpMSpV (sparse matrix sparse vector multipli-

cation) accelerator for fully connected layers in CNN and show significant performance gains over

CPU and GPU. However, all these works focus on deep learning applications where the density is

really high. TPU [JYP+17] implemented a 2-d systolic array for GEMM.

OuterSPACE [PBP+18] and ExTensor [HAMP+19] are two recent works that propose hard-

ware accelerators for SpGEMM computation on very sparse matrices. However, OuterSPACE ap-

plies the outer product approach and ExTensor applies the inner product approach for SpGEMM,

the inefficiencies of which have been discussed in Section 5.2. Yavits and Ginosar [YG17] ex-

plores a juxtaposed resistive content addressable memory (CAM) and RAM-based SpGEMM. Zhu

et al. [ZGS+13] introduces a 3D-stacked logic-in-memory system by placing logic layers between

DRAM dies to accelerate a 3D-DRAM system for sparse data access and built a custom CAM

architecture to speed-up the index-alignment process of column-wise product approach.

5.9 Conclusion

In this chapter, I present a novel row-wise product based accelerator (MatRaptor) for SpGEMM,

which achieves high performance and energy-efficiency over CPU, GPU and the state-of-the-art

SpGEMM accelerator OuterSPACE. It also has 7.2× lower power consumption and 31.3× smaller

area compared to OuterSPACE. To achieve this, I introduce a new hardware-friendly sparse stor-

age format named C2SR, which improves the memory bandwidth utilization by enabling vectorized

and streaming memory accesses. I also implement a novel sorting hardware to merge the partial

sums in the SpGEMM computation and prototyped and simulated MatRaptor using gem5 on a

diverse set of matrices.
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CHAPTER 6
CONCLUSION

This dissertation presents hardware accelerators, a spatial language for generating hardware

and storage formats for accelerating sparse and dense tensor computations. The problem of ac-

celerating tensor computations in hardware is approached from two angles: creating a a general

framework for productively designing high-performance accelerators for dense tensor computa-

tions, and building versatile accelerators that can accelerate some of the common dense and sparse

tensor computations. As Moore’s Law and Dennard scaling slow down and the computation re-

quirements increase with surge in machine learning, there is an urgent need of energy-efficient

and high-performance hardware. This dissertation addresses this challenge by designing energy-

efficient and high-performance accelerators for tensor computations, which are the integral part of

most machine learning applications.

6.1 Dissertation Summary and Contributions

Chapters 1 and 2 motivated the need for energy efficient hardware for tensor computations.

In the current era of data explosion, machine learning techniques have become pervasive tools in

emerging large-scale commercial applications and tensor algebra is at the heart of these machine

learning techniques. As Moore’s law and Dennard scaling slow down and computation demands

increase, energy-efficient and high-performance hardware for tensor computations is needed. In

this dissertation, I provided an extensive background on tensors, tensor factorizations, applications

of tensor factorizations, matrix kernels and their applications. Both sparse tensor kernels and

sparse storage formats form an important part of this dissertation. The co-design of sparse storage

formats and hardware for sparse tensor kernels can address the needs of high-performance and

energy-efficient tensor computations.

Chapter 3 of this dissertation explored the hardware acceleration of dense tensor computations

on spatial hardware such as FPGAs and CGRAs. I provided a language and compilation framework

for productively generating high-performance systolic arrays for dense tensor kernels on spatial ar-

chitectures. The proposed language decouples a functional specification from a spatial mapping,

and allows programmers to quickly explore various spatial optimizations for the same tensor ker-

nel. The techniques proposed in this chapter such as unrolling, double buffering, vectorization
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and data serialization provide a key set of hardware optimizations that are essential for generating

high-performance accelerators for dense tensor computations, which are later generalized to the

mixed sparse-dense and dense tensor computations in subsequent chapters.

Chapter 4 explored the hardware acceleration of both dense and mixed sparse-dense tensor

computations and used the domain knowledge gained from Chapter 3. Unlike hardware for dense

tensor computations, a key requirement for achieving high-performance for sparse tensor kernels

is a sparse storage format which can allow efficient memory accesses for parallel compute units in

the hardware. In this chapter, I co-designed a hardware and a sparse storage format, which allows

accessing the sparse data in vectorized and streaming fashion and maximizes the utilization of the

memory bandwidth. For designing such an accelerator, I extracted a common computation pattern

that is found in major matrix and tensor computation kernels and implemented it in the hardware.

Thus by designing the hardware based on this common compute pattern, I could not only accelerate

tensor factorizations but also mixed sparse-dense matrix operations.

Chapter 5 further explored the hardware acceleration of sparse-sparse matrix-matrix multipli-

cation (SpGEMM), which is by far the most important sparse-sparse tensor kernel. I presented

MatRaptor, a novel SpGEMM accelerator that is high performance and highly resource efficient.

Unlike conventional methods using inner or outer product as the meta operation for matrix mul-

tiplication, in this chapter, I use a row-wise product approach, which offers a better trade-off in

terms of data reuse and on-chip memory requirements, and achieves higher performance for large

sparse matrices. I further proposed a new hardware-friendly sparse storage format, which allows

parallel compute engines to access the sparse data in a vectorized and streaming fashion, leading

to high utilization of memory bandwidth.

To reiterate the major contributions of this dissertation are:

• It proposes a concise yet expressive programming abstraction that decouples spatial mapping

from the functional specification of a tensor computation.

• It identifies a set of key spatial optimizations that are essential for creating high-performance

spatial hardware for dense tensor computations.

• It proposes a language and compilation framework to productively generate high-performance

systolic arrays for dense tensor computations.
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• It proposes the first hardware accelerator designed for mixed sparse-dense tensor factoriza-

tions. This accelerator is both versatile and adaptable and supports several mixed sparse-

dense matrix operations for a wide range of sparsity.

• It proposes a new sparse storage format, scalable compressed interleaved sparse row (SCISR),

which allows accessing sparse data in vectorized and streaming fashion and thus helps sparse

accelerators in achieving high memory bandwidth utilization and performance for sparse

tensor kernels.

• It systematically analyzes different dataflows for sparse-sparse matrix-matrix multiplication

by comparing and contrasting them against data reuse and on-chip memory requirements.

It also shows that a row-wise product approach, which has not been explored in the design

of sparse-sparse matrix-matrix multiplication accelerators, has the potential to outperform

existing approaches.

• It proposes C2SR, a new hardware-friendly sparse storage format that allows different parallel

processing engines to access the data in a vectorized and streaming manner leading to high

utilization of the available memory bandwidth. This format solves the same challenges as in

SCISR format; however, unlike SCISR which can be used only for sparse input matrices but

not sparse output matrices, C2SR can be used for both.

6.2 Future Work

6.2.1 T2S-Tensor for sparse tensors

T2S-Tensor allows expressing a varying range of tensor kernels and performs spatial opti-

mizations to generate high-performance systolic arrays. However, it only focuses on dense tensor

computations as the programming abstractions; the intermediate representation and many of the

code transformations are based on Halide [RKBA+13] that was primarily built for optimizing

image processing pipelines. Recently, TACO [KKC+17], a domain-specific language (DSL) for

sparse tensor computations, was proposed in which the sparse algorithms can be expressed in the

same way as in Halide along with a new way of representing sparse storage formats. It uses a

notion of merge lattices to automatically generate the CPU code for sparse tensor kernels. There is

great opportunity in implementing the ideas of lattice merging from TACO in T2S-Tensor to add
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support for sparse tensor computation. One interesting work that emerged after TACO is ExTen-

sor [HAMP+19], which uses the ideas of lattice merging to create a domain-specific accelerator

for sparse matrix kernels. There is an already existing idea of enabling sparse matrix-vector com-

putation in T2S-Tensor language [Ron18]; however, it has not yet been realized in the language

and the compiler.

6.2.2 Processing In Memory for Tensaurus

Tensaurus accelerates dense and mixed sparse-dense tensor computations. As it can be seen

from the results for the sparse tensor benchmarks, most of the kernels are memory bound with

low data-reuse and hence can benefit significantly from a memory system that provides a higher

memory bandwidth. Near-memory computing (NMC) is an attractive solution for such high band-

width requirements. NMC aims at processing the data close to where it resides. This data-centric

approach places the compute units close to the data and attempts to minimize expensive data move-

ments. Three-dimensional memory stacking is the true enabler for NMC as it allows stacking of

logic and memory together using through-silicon vias (TSVs). Micron’s Hybrid Memory Cube

(HMC) [Paw11], High Bandwidth Memory (HBM) [LKK+14] from AMD and Hynix, and Sam-

sung’s Wide I/O [KOL+11] are few examples of such memory technologies.

6.2.3 Accelerating Sparse Convolution Neural Networks on MatRaptor

MatRaptor accelerates sparse-sparse matrix multiplication using a row-wise product approach.

Such an approach is more efficient compared to the outer-product approach when the operand

matrices are large and very sparse as the disadvantage corresponding to low data-reuse is compen-

sated by the low on-chip memory requirements. However, for sparse deep learning applications

such as convolutional neural networks that involve sparse-sparse matrix multiplication the size and

the sparsity of the operand matrices is low, which makes the outer-product approach more efficient

solution. An interesting direction would be to build a reconfigurable accelerator for sparse-sparse

matrix multiplication which can operate in two modes: (1) using a row-wise product approach for

large and very sparse matrices, and (2) using an outer-product approach for small and less sparse

matrices.
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