
1

Operation Dependent Frequency Scaling Using
Desynchronization

Nitish Srivastava, Student Member, IEEE, and Rajit Manohar, Senior Member, IEEE

Abstract—Asynchronous circuits are inherently more robust
than their synchronous counterparts. Desynchronization is a way
to obtain asynchronous circuits from a synchronous specification
using standard design tools while improving circuit for variation
tolerance, electro-magnetic interference (EMI), and resulting in
similar area, delay, and energy as the synchronous baseline. This
paper proposes a novel operation-dependent desynchronization
technique, which desynchronizes the circuit and improves per-
formance beyond the limits of synchronous design. We perform
a case study of our proposed technique on RISC-V rocket core
and show significant improvement in performance with minimal
power and area overheads.

Index Terms—Asynchronous circuits, desynchronization, fre-
quency scaling, synchronous designs, circuit optimizations.

I. INTRODUCTION

ASYNCHRONOUS circuits have several potential benefits
over synchronous circuits. They are less prone to failure

due to process variations, voltage, temperature etc., which
can reduce the growing timing complexity in digital design.
In spite of these benefits, industry has been reluctant to
fully migrate to asynchronous methodology due to the costs
and risks of leaving synchronous domain, which has a long
legacy of success and sophisticated CAD infrastructure. One of
the drawbacks of asynchronous design is that standard CAD
tools for logic synthesis cannot be used for control signals,
since those signals must be hazard-free. Asynchronous designs
like Quasi Delay Insensitive (QDI) circuits which do not
make assumptions about the timing of different components
have immature CAD flow. The designing of these circuits
is also very different from synchronous circuits and has a
steep learning curve for designers. Bundled data is another
approach of designing asynchronous circuits where similar
to synchronous design combinational logic blocks are imple-
mented using standard CAD tool flow. It uses asynchronous
handshake controllers to control the data transfer between
multiple combinational blocks. These designs are not self-
timed like QDI circuits as they require the knowledge of
delays of the combinational blocks. For QDI circuits the
design itself is delay insensitive and hence the correctness
of the circuits does not depend on supply voltage, operating
temperature and process variations. Bundled data circuits on
the other hand have local handshake controllers which are

N. Srivastava is with the Department of Electrical and Computer Engineer-
ing, Cornell University, Ithaca, NY, 14850 USA e-mail: nks45@cornell.edu
(see https://nitish2112.github.io).

R. Manohar is the John C. Malone Professor of Electrical Engineer-
ing and a Professor of Computer Science at Yale University. email: ra-
jit.manohar@yale.edu (see http://csl.yale.edu/ rajit/)

placed close to the combinational blocks and hence undergo
similar voltage, temperature and process variations as the com-
binational block. The closed loop property of the asynchronous
circuits distinguishes them from the synchronous circuits.
Asynchronous circuits work on the principle of handshakes. If
one component takes more time to perform the computation,
the rest of the components wait for this computation to finish.
Unlike synchronous design where any change in timing of
a component can result in circuit failure. Techniques for
automated conversion of synchronous to asynchronous designs
are appealing, because they can address the challenges of
asynchronous design yet provide the benefits of asynchronous
designs.

Desynchronization [1], [2] and phased-logic [3] are two
techniques that convert synchronous designs to asynchronous
ones. [3] introduced the notion of phased logic, in which each
synchronous combinational logic gate is replaced with a small
sequential handshaking asynchronous circuit. [1] and [2] use
a fully automated synthesis flow which do not change the
overall structure of the synchronous design and show that the
resultant asynchronous circuit has similar delay, and energy as
compared to the original synchronous design, while improving
the timing variations and EMI at the same time. [1] shows a
22% area overhead in the desynchronized circuit, however a
most of that overhead comes from using latches instead of
registers. [4] proposed a desynchronization technique which
uses registers instead of latches and has small controllers
to decrease the area overhead of desynchronization. Their
proposed technique showed significant power and energy
reduction while similar performance as compared to standard
desynchronization using latches as in [1]. To improve the
performance of a desynchronized circuit, Weaver [5], Proteus
[6] and [7] have explored the possibility of converting syn-
chronous designs into an aggressively pipelined asynchronous
implementations that can exceed 1 GHz in frequency. While
these approaches can improve performance in some cases, the
cost in area and power can be significant [8]. [9] designed
a multiple clock domain micro-architecture using a globally-
asynchronous, locally synchronous (GALS) clocking style to
solve the challenges of globally clocked synchronous systems
and showed a performance degradation of less than 4%.

Traditional asynchronous design methodology has the po-
tential to achieve better performance than their synchronous
counterparts, because it is data driven and activate only those
paths in the design which are needed for certain computation.
It is challenging to exploit this property when starting from
a detailed synchronous design, because the design is created
with a global clock in mind and it becomes difficult to



2

determine what operations are in fact data-dependent after the
design has been transformed by logic synthesis tools. Proteus
[6] provides support for conditional send and receive primi-
tives as a way to reduce power overhead of the baseline flow
with user-intervention as well as some automation support.
[10] proposed a tool for synthesizing asynchronous circuits
using XSTG specifications. Telescopic units [11] breaks down
the critical paths to operate in two clock cycles instead of one,
and uses remaining paths to determine clock frequency of the
entire design. Varipipe [12] recognizes the fact that all critical
paths in a synchronous design are not active at the same time
and designs a control circuitry which changes the clock period
every cycle based on the largest critical path used by any of
the operations in the pipeline. However, it uses a central clock
pulse generator so the clock tree still needs to be synthesized
and clock issues related to spatial-temporal variations, and
EMI are not resolved. [13] proposes a variable delay line and
uses Mousetrap controllers [14] to desynchronize synchronous
circuits. However, the study was done on a simple linear
pipeline of floating point adder which does not consist of
any forks or joins. [15] proposed a resynthesis technique
to improve the performance of desynchronized bundled data
circuits. A performance improvement of 25% was shown over
the synchronous baselines. However, the circuits used were
instruction decode and execution units which are much simpler
than entire processor pipelines.

This paper builds on the desynchronization approach for
synchronous to asynchronous conversion, which is known
to produce asynchronous designs that have about the same
area, delay, and energy of their synchronous baseline, but
are inherently closed loop and hence, more robust against
supply voltage, operating temperature and large scale process
variations [1]. We introduce operation-dependent desynchro-
nization, a technique that requires minimal designer effort but
results in improved average-case performance while preserving
the core benefits of desynchronization. Our key contributions
are:

1) We identify the performance limitations in existing desyn-
chronization approaches, discussing why similar tech-
niques do not provide better performance than the cor-
responding synchronous design.

2) We propose a novel desynchronization technique which
does not modify the datapath of the synchronous design
similar to the previous approaches, but can perform better
than the baseline synchronous design.

3) We perform a case study of proposed technique on
RISC-V processor pipeline from U. C. Berkeley and
show significant improvement in performance and energy
efficiency for many benchmarks.

4) We use standard CAD flow for simulation and synthesis
in our proposed approach and hence our approach does
not required a different CAD tool flow.

The rest of the paper is organized as follows: Section II
discusses the traditional desynchronization technique on a toy
example and its limitations, Section III describes the pro-
posed desynchronization technique, Section IV discusses the
desynchronization of RISC-V processor pipeline along with

X +
R.b

L

L.a

Stage 1 Stage 2

clk1 clk2

R.a

r.b

R
b b

aa

L R
b b

aa

L.b

r.a l.a

l.b

left

buffer

right

buffer

delaydelay

two-place

buffer

Fig. 1: Two stage pipeline for multiply accumulate and the
asynchronous control to provide the clock

experimental results, followed by conclusions in Section V.

II. STANDARD DESYNCHRONIZATION

Desynchronization techniques that use standard design
tools, replace clock network with an asynchronous circuit
which is responsible for generating the clock signals. At one
extreme, desynchronization results in a design where each one-
bit register has its own clock generated by the asynchronous
control, which requires as many asynchronous controls as the
number of registers and can result in high area and power
overhead. At the other extreme, entire system uses a single
asynchronous controller that generates one clock for all the
registers—which is same as the synchronous baseline. To
reach a balance between the two extremes, researchers often
use a single clock for all registers in a pipeline stage but
different clocks for different pipeline stages as in [1] or use
some clustering and separation analysis methods to reduce
the controller overhead [16]. These techniques reduce area
and power overheads and at the same time desynchronize the
circuit with low design effort.

A. Desynchronization example

We first explain desynchronization based on pipeline stages
on a very simple example of a synchronous multiply-
accumulate pipeline which multiplies two inputs and accu-
mulates the result as shown in Figure 1. We use asynchronous
buffers to design the asynchronous circuit for generating
clock for each stage. There have been many studies on
different asynchronous handshake controllers that can be used
for desynchronization with different Signal Transition Graph
(STG) specifications [1]; we simply use one design throughout
this paper for simplicity, and the technique can be incorporated
into other designs without difficulty.

The desynchronization controller that we use is a two-place
buffer with input channel L and output channel R and an
initial token (one-bit), as shown in Figure 1. These buffers have
two ports on the left channel (L), req port (L.b) to receive a
communication token, and ack port (L.a) to acknowledge the
sender about the received token. On the right channel (R), the
req port (R.b) sends the token to the buffer connected to the
right and the ack port (R.a) receives the acknowledgement. To
desynchronize the two stage multiply-accumulate example, we
design an asynchronous control having two two-place buffers
for the two stages connected in a ring as shown in Figure
1. Each two-place buffer is made up of two one-place buffers



3

where one buffer starts by waiting for a token on the L channel
and then sends the token on the r channel, which we denote
as left buffer. The other buffer starts the communication by
sending a token on the R channel and then waits for a token
on the l channel, which we denote as right buffer, as shown
in Figure 1. The following equations show the implementation
of both left and right buffers in Communicating Hardware
Processes (CHP) language [17]:

∗ [[L.b];L.a+; [∼ L.b];L.a−; r.b+; [r.a]; r.b−; [∼ r.a]]

∗ [R.b+; [R.a];R.b−; [∼ R.a]; [l.b]; l.a+; [∼ l.b]; l.a−]

The first equation implements a left buffer and the second
implements a right buffer, + denotes a rising transition, -
denotes a falling transition, [] denotes a wait till the signal
becomes true, ; denotes the sequential composition and * at
the beginning means that the same process keeps repeating
forever.

In Figure 1, whenever a right buffer makes a positive
transition on the right request wire (R.b), it also provides
a positive edge of the clock to the registers in that stage. A
delay line on the right request wire is used to ensure that it
takes at least the maximum logic delay of the sender stage to
complete a send to the left buffer of the receiver stage. Once
the send is complete left buffer in receiver stage can pass that
token to its right buffer which then initiates a send on its R
channel and also provides a positive clock edge to the registers
of that stage. The delay lines ensure that not only the output
of the combinational logic between the two stages is stable but
also that any combinational logic path internal to a pipeline
stage is stable.

In general for correct functionality, any two connected
stages in synchronous design will require a delay line between
their asynchronous buffers. The delay for these delay line is
set by the maximum of the reg-to-reg delay from source to
the destination stages and intra-stage reg-to-reg delay of the
source. The delay of the gates in the asynchronous controller
can also be taken into account when determining the delay
of the explicit delay line. In case of non-linear pipelines
where the output of one synchronous stage can go to multiple
stages, different delay lines are placed between any set of
source destination pair based on the appropriate path delays.
The acknowledgement wire ensures that the data has been
correctly read by the destination registers, and hence a Muller
C-element is used to ensure that the source buffer receives the
acknowledgement only after all the destination buffers have
acknowledged. When a destination stage receives data from
two or more stages, a Muller C-element on req wire is used
to ensure that the input is read only after the data from all
the sources are stable. This construction is also the basis for
desynchronization [1].

The delay lines are sufficient to ensure that the setup times
of flip-flops are satisfied. To ensure that the hold times are also
satisfied, one can make a buffer as slow as its neighbour or
can use a handshake controller which accounts for hold time
[1]. We use the first approach in our design throughout this
paper.

 

(a) (b)

Fig. 2: (a) Asynchronous control for a single pipeline stage
and (b) timed graph showing the largest algorithmic cycle.

slow

fast

S

S

Out

Out
glitch

0

1

I0

I1
I1

I0

Fig. 3: A slow multiplexer select signal can result in a glitch
causing spurious handshakes

B. Observations on performance

After desynchronizing the multiply-accumulate pipeline, we
do not observe any improvement in performance. The reason
is even though the delay of the accumulate stage is small,
the overall cycle time (time for a complete handshake in the
asynchronous ring) is still determined by the longest delay
i.e. delay through the multiplier. Thus the desynchronized
pipeline achieves the same performance as the synchronous
counterpart. We realize that any desynchronization technique,
whether based on pipeline stages as in [1] or clustering and
separation analysis as in [16], which does not change the
synchronous logic itself and just tries to alter the clock network
cannot perform better than the original synchronous circuit.
The worst-case timing path in the clocked implementation is a
reg-to-reg path that still exists in the design and must appear as
part of some delay line in the system. It is well-known that the
throughput of an asynchronous system where the system has
and-causality (as is the case for the asynchronous controllers)
is determined by the maximum cycle mean of the timed event
graph [18]. Figure 2 shows an asynchronous buffer with a
token connected via wires to an empty buffer on its left and
using a delay to an empty buffer on its right and part of the
corresponding timed event graph. There is a simple cycle with
a cycle mean corresponding to the delay line—and hence, the
maximum reg-to-reg delay between the two desynchronization
regions. Therefore, for any synchronous design, the largest
logic delay will show up in some cycle in the event rule
graph and hence the throughput will always be limited by the
maximum of all the reg-to-reg delays in the circuit—which is
the clock period of the original synchronous circuit.

III. PROPOSED APPROACH

The clock period of a synchronous circuit is set by the
longest path between two registers known as the critical path.
When there are a small number of critical paths that are
primarily limiting performance, synchronous designers use
pipelining, retiming, clock domain crossing, dynamic time



4

borrowing and various other techniques to improve throughput.
These techniques, however, come with the cost of significant
design effort, area and energy and also may not always be
feasible.

A. Design modularity

Most complex designs consist of a large collection of
modules. Even though timing characterization requires global
analysis, a chip is broken down into modules for ease of
understanding and design. Many times most of the critical
paths lie in a subset of modules which may not be needed
all the time and the active state of those modules can also be
determined based on the operations being performed in the
current cycle. Our proposed operation-dependent desynchro-
nization technique focuses on exploiting this observation.

When confronted with a slow module, a designer could
make major architectural changes to ensure that the slow
module is no longer on the critical path. Examples of this
include re-pipelining the design, or operating the module in
a separate clock domain and using clock domain conversion
logic, etc. However, these are very intrusive changes and
require significant effort. Also, given two modules A and B,
with A running at a frequency slightly higher than B, while
having many critical paths in B, a designer might have to
pipeline all of those paths or compromise the frequency of the
overall system. Neither of these are good options if the design
effort, area, energy and power overheads of pipelining cannot
be justified—especially if module B is infrequently used. The
situation is even worse when the design has a large number
of modules.

In synchronous designs, satisfying timing constraints stat-
ically for all paths is a hard constraint which is required
to run the whole design on a single clock. Current syn-
chronous design tools have support for clock gating registers
in individual modules to save power and energy when they
are not needed. Designers use valid bits or enable bits to
indicate when a section of the logic in their design can be
clock gated. While this is highly effective at reducing power
consumption, it does not help with performance. If we can
exploit the information about the active state of the modules,
one can imagine designing a clock that can vary its frequency
from one cycle to the next based on the dynamic information
about the active components in the design. This kind of
dynamic frequency scaling can improve the performance of
synchronous circuits which are designed using single clock.
However, designing such a centralized clock is not an easy
task since the frequency for each clock cycle is a function of
the global state of all the modules on that cycle. The set of
possible configurations that must be considered grows quickly
with the number of modules in the system.

B. Operation-Dependent Desynchronization

Instead, we propose a novel, distributed technique that
accomplishes the same goal that we call operation-dependent
desynchronization. Using only information about a module
and the operations for which it is active, we create a simple
handshake controller that permits the global system throughput

to dynamically increase when modules that contain the critical
path are not active. The technique is scalable, and circuit
overhead grows linearly with number of regions where the
technique is applied.

First of all the synchronous design is partitioned into
desynchronization regions and a two-place buffer is used to
provide clock to each region instead of pipeline stages as in
standard desynchronization (Section II). A desynchronization
region consists of a single module or a group of modules in
the synchronous design. Figure 4 shows a simple example with
five regions each of which has some registers and some com-
binational logic. These regions can consist of any synchronous
design which involves single clock with positive edge triggered
logic. We will not discuss generated clocks, multiple clocks
and latch based designs in this paper, but the proposed tech-
niques are generic enough to be adapted for these designs with
minor modifications. The regions can however consist of any
number of pipeline stages connected in any form. All registers
in a region are provided the same clock; however, registers
in different regions are provided different clocks. The clocks
are generated from the asynchronous control shown in Figure
4(b). The buffers of different regions communicate with each
other via handshakes based on the topology of the synchronous
design. If the modules in a region send data to some other
module in a different region then there exists a communication
channel between the asynchronous buffers for the two regions.
The request wire on the R channel of the buffer of any region
is used as clock for all the modules in that region. To ensure
correct data delivery a delay line is placed on the request wire
between the buffers of the sender and receiver stage so that the
communication token is received by the receiver stage only
after the delay requirement corresponding to largest reg-to-
reg path in the sender or between the sender and receiver
stage is satisfied. Designing a delay line with a predictable
delay is a thoroughly studied problem. A recent reference that
describes how to synthesize delay lines that track the delay of
the combinational logic they are supposed to match is [19]. A
lower power and mixed-signal solution for long delay lines is
[20].

The performance of this desynchronized design is still
limited by the worst case reg-to-reg delay as the largest
cycle in the timing graph is the one that corresponds to the
longest critical path. To go beyond this performance limit, we
make use of the active state of the different desynchronization
regions. For each region, we assume that we can use the
operations being performed in the synchronous circuit to
identify whether or not the modules in that region are active
in the current clock cycle or not. When a module is inactive,
its state does not change and hence any path that originate
from the registers in the module can be ignored when setting
the delay of that region. We replace single delay lines with
a set of delay lines and multiplexers which pick the right
delay line depending upon whether a module is idle or not
as shown in Figure 4. This permits the design to operate at
a higher frequency, in situations when the part of the system
that contains the critical path is idle.

Even when all the modules are active, it is possible that
certain critical paths in a module are required for a particular



5

operation, but can be ignored most of the time. For example, a
critical path through multiplier in an in-order pipeline can be
ignored when there are no multiply instructions in the pipeline.
In these scenarios, frequency can still be increased even if
all the modules are active and one can imagine having extra
delay lines corresponding to these fast frequencies and logic
to determine when such critical paths are inactive.

Finally, we note that in many synchronous designs, de-
termining the active state of a module is not a challenging
task. This information is often present in the design in the
form of valid signals which are used by design tools for
power optimizations like clock gating etc., or can be easily
determined by identifying the operations for example, by
matching opcodes in processor pipelines, current cycle count
and pipeline initiation interval in case of CGRAs etc. Many
of the modules have pipelined datapaths with valid signals or
have fixed latency which can also be used to determine the
active state of the modules as shown in Figure 5. FSM on
the left corresponds to a module which has a fixed latency
and hence by using an incrementing counter it can be easily
determined when the module is active or idle. The FSM on the
right corresponds to the module which has valid signals in each
pipeline stage. Here idle state of a module can be determined
by combining the valid signals from different stages using
OR logic. The only design overhead that the synchronous
designers have to pay is to create a small finite state machine
as shown in Figure 5 which generates information about the
active state of a module based on operations in the pipeline
or various valid signals from different modules. Further, the
output of the finite state machine responsible for selecting the
delay line using multiplexers should be faster than the fastest
of all the delay lines that are input to this multiplexer. As
shown in Figure 3, if the output of the finite state machine
going into the multiplexer select signal is slower, then a glitch
can appear on the multiplexer output resulting into undesired
handshakes between the asynchronous controllers. However,
this is not a problem most of the time as the logic delay of
the combinational logic for select signals based on the current
finite state machine state is quite small as compared to the
delay lines determining the clock period.

IV. CASE STUDY: RISC-V ROCKET CORE

To demonstrate the proposed operation-dependent desyn-
chronization technique, we did not want to create our own
synchronous design and then use it to show improvements
and hence we are demonstrating this idea on the open-source
implementation of RISC-V rocket core developed at U. C.
Berkeley [21]. We synthesize the RISC-V core using Synopsys
Design Compiler (compile_ultra) and generate standard
cell netlist and timing reports using a low power 28nm library.
The timing reports show that with a 28nm technology node, the
design is able to achieve a clock period of 1.8ns i.e. 555 MHz
and most of the critical paths are in the floating point unit
(FPU), some in the mul-div unit of the core and few in
the control unit corresponding to branch instructions. Ignoring
these units/paths help us achieve a clock period of around
1.3ns i.e. a frequency of 770 MHz. As all the instructions in

any application need not be floating point, multiply/divide or
branch, ignoring the slower modules/paths when they are not
used can potentially improve the average-case performance.

To determine the desynchronization regions, we first extract
a graph whose vertices represent different modules in the
design, edges represented the existence of a reg-reg path
between the two modules and weight on the edges represent
the longest reg-reg path delay between the two modules as
shown in Figure 6(a). The self-edges represent the longest
reg-reg delay within a module. If the self-edge contains a
path which can be easily detected at run-time, and the rest
of the paths have delay significantly less than the self-edge,
the self-edge is deprecated to the next largest critical path and
two delay lines are assigned for these two different critical
paths. For example, in Figure 6(a), the core module had
critical paths corresponding to branch instructions which were
significantly larger than other paths and hence the self-edge
(shown as dotted arrow) is deprecated to the second largest
delay of 1.3ns (shown as solid arrow) and an extra delay line
of 1.8ns is added in the asynchronous control. To construct
the module graph, we wrote a python script which parses
the netlist obtained after the synthesis using Synopsys Design
Compiler. It creates a list of different modules in the design
using the module definitions in the Verilog netlist and then
determines all reg-to-reg paths between two modules. It then
creates the module graph by assigning a node to each module
and connecting the nodes using edges when there is reg-to-
reg path between two modules. Then weights on the edges
are assigned using the delay of the longest reg-to-reg path
between two modules from the timing reports.

Next, this graph is split into three different regions such that
each region gets its own local asynchronous clock generator.
Splitting of the graph into different regions is not automated at
this point and has to be done manually. One could use sophis-
ticated separation analysis and clustering techniques as in [16]
for finding the desynchronization regions that would minimize
the overall controller area. However, for RISC-V rocket core,
we assign the modules which are conceptually closer i.e. share
the same opcode or similar functionality to a single region. For
example, different units in the floating point unit are assigned
to a single region as it becomes easier to detect the active
state of the region just based on the opcode, resulting in
small detection circuit. Since the operations being performed
inside the ALU like add, bitwise-and/or/xor, comparisons all
resulted in a critical path less than 1.3ns, all of them are
combined together with the Core and assigned to a single
desynchronization region. In case, the critical paths in the ALU
had been significantly different for different operations, one
could split different operations inside the ALU into different
regions as well. In our case, since multiply and divide were
the only operations that had significantly larger critical paths,
they are assigned to a different desynchronization region.

The next challenge was to determine when these regions
are active. After studying the RISC-V rocket core design,
we realized that the active state of the FPU can be easily
determined by inspecting the valid bits of the pipeline stages
in the FPU as shown in Figure 5(b). For multiply/divide
instructions, we used the valid bit in the val/rdy interface



6

(a) (b)

A

L R

D

L R

E

L R

B

L R

C

L R

C

C

C

C

C C

(c)

slow

fast

A D

B C E

Fig. 4: (a) Synchronous designs with 5 modules (b) asynchronous controller for clock generation (c) MUX to skip the delays
between the modules.

Init

Inc
Count

Reset
Count

in_validcount = 
latency

Init

Module
Active

in_valid

any
stage
valid

no
stage
valid

(a) (b)

Fig. 5: Finite State Machine for (a) modules with fixed latency
(b) modules with valid signals. The shaded region represents
the states in which the module is active, in valid is the signal
which tells whether an input will be fed to the module in the
next cycle or not.

of the multiply/divide module and the pipeline latency to
create an FSM as shown in Figure 5(a) and used opcode
matching for branch instructions. As the cycle period needs to
be scaled up before the instruction enters these modules/paths,
a small opcode matching logic was placed in the Fetch stage,
which can predict ahead of time whether the instruction is
floating point, multiply/divide or branch and the frequency can
be scaled before the instruction actually gets executed. This
technique however has its own drawback—for example, even
when the floating-point/multiply/divide/branch instruction is
stalled due to some dependency, the processor would still run
at a lower frequency even though these units/paths are not
being used. For simplicity, we use this approach; however
one can use more complex logic that only indicate whether
the module/path is going to be active in the very next clock
cycle or not. Next, we design the asynchronous handshake
controllers for the three regions. Figure 6(c) shows the delay
lines for region A corresponding to the maximum reg-to-reg
delay inside the Core when branch logic is active, when it is
inactive, and the maximum reg-to-reg delay of its neighbors
B and C. Similarly, delay lines for region B correspond to the
maximum reg-to-reg delay within region B and of the neighbor
A and for region C correspond to maximum reg-to-reg delay
within C and of neighbor A. To desynchronize the rocket core
we implement the three asynchronous controllers, all the delay
lines, C-elements and multiplexers shown in Figure 6(c). The
active bit from the designed FSMs are used as the select
signals for the multiplexers. This results in dynamic scaling up

of frequency when instructions being executed on the RISC-V
core are integer arithmetic/load-store instructions which do not
involve floating point, multiply, divide, or branch calculation
hardware, as shown in the waveform in Figure 7.

To create the asynchronous controller, we design the buffers,
delay lines and multiplexer in CHP language and translate
them to the production rules manually as described in [17].
After thorough testing using our in-house production rule
simulator, we combine them together and modify the RISC-V
rocket core to use the asynchronous control to provide clock
for different regions. The signals from the designed FSMs are
then connected to the asynchronous control. This joint timed
simulation of asynchronous circuits with synthesized RTL is
facilitated by an integrated simulation tool developed inter-
nally that combines a custom asynchronous logic simulator
with Synopsys VCS. The sdf (Standard Delay Format) file
produced by the design compiler was used to model the actual
gate delays in the design. To make sure that one does not have
to rely on our in-house production rule simulator or integrated
simulation tool, we redesigned all the controllers by re-writing
the production rules in verilog and used Synopsys VCS to test
the entire design.

For all our experiments we used the timing reports generated
after the synthesis using Design Compiler. However, as the
placement and routing can change the delays of various paths,
in a complete flow the proposed desynchronization technique
should be applied using post place and route timing reports.
Maintaining the delay values is important for the proposed
desynchronization technique to work and hence to achieve
that a three step placement approach can be adopted. In the
first step, the design should go through place and route and
the timing reports should be obtained. These timing reports
should be used to determine the desynchronization regions. In
the second step, the synchronous design should go through the
place and route again, but this time asynchronous controllers
with empty cells for delay lines should be placed next to each
desynchronization region. Local clock tree networks should
also be generated to distribute the clock within different
desynchronization regions. In the last step, delay values should
be obtained based on the timing reports from the second step
and delay lines should be placed in the empty cells. Since the
entire circuit except the delay lines is placed and routed in
the second step and then delay lines are placed accordingly in
the third step, this three-step placement mitigates convergence
issues.



7

(c)

C

B

A

C

L R

L

R
LR

B A

C

C

b

a

b

a

b

a

b

a

b

b

a

a

clkB clkA
clkC

1.8

1.3

1.8

1.7

1.8

1.3

1.8

1.7

1.8

1.3

1.8

1.3

1.8

1.7

1.3

Fig. 6: Desynchronization of RISC-V core: (a) shows the module graph, (b) shows the desynchronization regions and clock
period required for each of them and (c) shows the asynchronous control for clock-generation

1.3 ns 1.8 ns

Fig. 7: Waveform showing the change in clock frequency when
the muxsel signal goes high

We test and evaluate our design on all the benchmarks
provided in the RISC-V test suite and some from the MiBench
embedded benchmark suite [22]. Figure 8a shows as a fraction
of number of cycles how many time a branch or mul/divide
or a floating point instruction is being executed in any of
the processor pipeline stages and Figure 8b shows the per-
formance improvement for various benchmarks. It can be
seen from Figure 8b that the performance improvement of
int multiply, towers, radix sort, and dhrystone are all > 20%.
This is because these benchmarks use integer data-types and
hence do not use floating point instructions and also have
less branch and divide instructions. Integer vector-vector add,
bitcount, float multiply and matrix multiplication achieve a
performance improvement of 12-17%. This is because the
first two benchmarks use integer data-types and are not very
heavy in branches, the last two on the other hand use floating
point data-types but still have fair fraction of instructions
which are neither floating point nor a branch or divide. Int
median, int quicksort, dijkstra and stringsearch, all achieve
a performance improvement less than 10% as all of these
had lots of forward and backward branches. Float median,
float quick sort, float vector-vector add, float basicmath, FFT
and sparse matrix-vector multiplication, all had a lot more
floating point instructions as compared to other floating point
benchmarks which resulted in a performance improvement
of less than 10%. Overall, we achieve a geometric mean
improvement of 12.9% for integer benchmarks and 6.5% for
floating point benchmarks. From Figures 8b and 8a it can be
seen that the benchmarks which have less number of floating
point, branch and multiply/divide instructions achieve more
performance improvement. Table I shows the size of data-sets
for different benchmarks.

In terms of area, gate counts for both synchronous processor
and asynchronous control are provided in Table II. The table
shows that additional number of gates required to attain this

int median

int multiply

int qsort

towers

int vvadd

dijkstra

stringsearch

rsort
dhrystone

bitcount

float median

float multiply

float qsort

float vvadd

basicmath

fft spmv
mm

Benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

In
st
ru
ct
io
n
 t
yp
e
s

OTHER B/D FP B/D + FP

(a) Instruction breakdown: B/D and FP are the fraction of times only
branch/mul-divide instructions and only floating point instruction are in
the pipeline respectively. B/D+FP is the fraction when both branch/mul-
divide and floating point instructions are in the pipeline, OTHERS
represent the remaining instructions

int median

int multiply

int qsort

towers

int vvadd

dijkstra

Stringsearch

rsort
Dhrystone

Bitcount

float median

float multiply

float qsort

float vvadd

basicmath

FFT
SPMV

MM GM GM

Benchmarks

0

5

10

15

20

25

30

P
e
rf
o
rm

a
n
ce
 i
m
p
ro
ve
m
e
n
t 
(%

)

Integer
Floating Point

(b) Percentage improvement in performance for various benchmarks

Fig. 8: Instruction breakdown and performance improvement
for various benchmarks in RISC-V and MiBench suites

performance improvement is just 0.3% and is very small
compared to the original RISC-V design.

We performed a thorough power-estimation of both syn-
chronous and desynchronized designs using the value change
dump (vcd) files produced by our simulations and the time-
based power analysis in Synopsys Prime-Time. Figure 9 shows
the power consumption of synchronous and desynchronized



8

TABLE I: Dataset sizes for different benchmarks

Benchmark Suite Data-type Dataset size
Median RISC-V float 400

int 400
Multiply RISC-V float 100

int 100
Qsort RISC-V float 2048

int 2048
Towers RISC-V int 7 discs
Vvadd RISC-V float 300

int 300
Dijkstra MiBench int 100 nodes
Stringsearch MiBench int 60
Rsort RISC-V int 2048
Dhrystone RISC-V int size 50, runs 500
Bitcount MiBench int 7500 iters, 7 funcs
Basicmath MiBench float –
FFT MiBench float 32
Spmv RISC-V float 1000 × 1000, density 0.01
Matrix-mult RISC-V float 6 × 6

TABLE II: Gate count for the RISC-V processor pipeline,
designed FSM and asynchronous circuit

Logic Number of Gates
FSM 103

Async Control 150
RISC-V Core + FPU 79,116

int median

int multiply

int qsort

towers

int vvadd

dijkstra

Stringsearch

rsort
Dhrystone

Bitcount

float median

float multiply

float qsort

float vvadd

basicmath

FFT
SPMV

MM

Benchmarks

0

2

4

6

8

10

P
o
w
e
r 
(m

W
)

Sync Async

Fig. 9: Power consumption of synchronous pipeline and desyn-
chronized pipeline

int median

int multiply

int qsort

towers

int vvadd

dijkstra

Stringsearch

rsort
Dhrystone

Bitcount

float median

float multiply

float qsort

float vvadd

basicmath

FFT
SPMV

MM

Benchmarks

0

2

4

6

8

10

12

14

16

18

P
o
w
e
r 
(m

W
)

DVFS Async

Fig. 10: Power consumption of synchronous pipeline and
desynchronized pipeline, where the synchronous pipeline is
running at a higher voltage and frequency (DVFS state) to
match the performance of desynchronized pipeline for each
benchmark

int median

int multiply

int qsort

towers

int vvadd

dijkstra

Stringsearch

rsort
Dhrystone

Bitcount

float median

float multiply

float qsort

float vvadd

basicmath

FFT
SPMV

MM

Benchmarks

0

10000

20000

30000

40000

50000

60000

70000

80000

E
n

e
rg

y 
E

ff
ic

ie
n

cy
 (
o
p
s/
u
J) DVFS Async

Fig. 11: Energy efficiency (#dynamic instructions/Energy)
of synchronous pipeline and desynchronized pipeline, where
the synchronous pipeline is running at a higher voltage and
frequency (DVFS state) to match the performance of desyn-
chronized pipeline for each benchmark

int median

int multiply

int qsort

towers

int vvadd

dijkstra

Stringsearch

rsort
Dhrystone

Bitcount

float median

float multiply

float qsort

float vvadd

basicmath

FFT
SPMV

MM GM GM

Benchmarks

0

2

4

6

8

10

12

14
P
e
rf
o
rm
a
n
ce
 i
m
p
ro
ve
m
e
n
t 
(%

)

Integer
Floating Point

(a) Performance improvement of the desynchronized design running at
lower voltage and frequency to achieve same power as synchronous
design.

int median

int multiply

int qsort

towers

int vvadd

dijkstra

Stringsearch

rsort
Dhrystone

Bitcount

float median

float multiply

float qsort

float vvadd

basicmath

FFT
SPMV

MM

Benchmarks

0

20000

40000

60000

80000

100000

E
n

e
rg

y 
E

ff
ic

ie
n

cy
 (
o
p
s/
u
J) Sync Async

(b) Energy efficiency (#dynamic instructions/Energy) comparison of
synchronous design and desynchronized design running at lower volt-
age and frequency to achieve same power consumption as synchronous
design.

Fig. 12: Performance and energy efficiency comparison of syn-
chronous pipeline and desynchronized pipeline where desyn-
chronized pipeline is running at a lower voltage and frequency
to have the same power consumption as the synchronous
pipeline



9

pipelines. Since, increasing frequency at the same voltage to
get higher performance also increases the power consumption,
the desynchronized version is consuming more power than
synchronous design. From Figure 9, it can be seen that the
increase in power is as high as 20-30% for int-multiply, int-
vvadd, towers, rsort and dhrystone benchmarks, for which
our technique provides the best performance results as well.
For the benchmarks with low performance improvement, the
power consumption also does not increase much.

To perform a fair comparison between the synchronous
and desynchronized version, for each benchmark we used the
DVFS voltage-frequency curve as in [23] to scale up the
voltage and frequency of synchronous design and estimate
the power consumption when both synchronous and desyn-
chronized designs achieve the same performance as shown in
Figure 10. Here, the desynchronized circuit is operating at
1V supply voltage and clock frequencies of 555 MHz, 588
MHz and 770 MHz (corresponding to 1.8ns, 1.7ns and 1.3ns
timing paths). For synchronous design as different benchmarks
required different voltages and frequencies in order to match
the performance of the desynchronized design, voltage and
frequency numbers for all the benchmarks not provided. The
original original supply voltage and clock frequency over
which DVFS scaling was performed was 1V and 555 MHz.
To compare the synchronous and desynchronized designs for
energy efficiency which is defined as number of instruc-
tions executed per unit µJ , we used the power consumption
from Figure 10 and execution time to determine the energy
consumption for desynchronized design and the synchronous
design running at higher frequency and voltage. We used
the dynamic instruction count and the energy consumption to
determine the energy efficiency for the two designs as shown
in Figure 11. As one can see, desynchronized design is more
energy efficient than the synchronous design running at higher
voltage and frequency to achieve same performance.

In order to compare the synchronous and desynchronized
designs under same power consumption, we scaled down the
voltage and frequency of the desynchronized design using [23]
and estimated the performance and energy efficiency of the
two designs. Figure 12a shows the performance improve-
ment of desynchronized design running at lower voltage and
frequency over the synchronous design with same power
consumption. Here synchronous design is operating at 1V
supply voltage and 555 MHz clock frequency. Figure 12b
shows energy efficiency for both synchronous design and the
desynchronized design running at lower voltage and frequency.
It can be seen that under same power consumption, desynchro-
nized design has a higher performance and energy efficiency
than the synchronous design. For all our experiments, power
consumption does not include clock tree network. As clock
is one of the major components of power consumption in
synchronous designs (around 40%) [24], we expect that the
desynchronized design will have lower power consumption
than the synchronous design.

To compare our proposed approach against the previous
work of telescopic units [11], we evaluated the performance
improvement of all of the benchmarks using telescopic units
and compared it with the performance improvement of our

int median

int multiply

int qsort

towers

int vvadd

dijkstra

Stringsearch

rsort
Dhrystone

Bitcount

float median

float multiply

float qsort

float vvadd

basicmath

FFT
SPMV

MM GM GM

Benchmarks

0

5

10

15

20

25

30

P
e
rf
o
rm

a
n
ce
 i
m
p
ro
ve
m
e
n
t

o
ve
r 
T
e
le
sc
o
p
ic
 (
%
)

Integer Floating Point

Fig. 13: Performance improvement over Telescopic Units

int median

int multiply

int qsort

towers

int vvadd

dijkstra

Stringsearch

rsort
Dhrystone

Bitcount

float median

float multiply

float qsort

float vvadd

basicmath

FFT
SPMV

MM GM GM

Benchmarks

0

2

4

6

8

10

12

14

P
e
rf
o
rm
a
n
ce
 i
m
p
ro
ve
m
e
n
t 
(%

)

Integer
Floating Point

(a) Performance improvement of the desynchronized design over Clock
Domain Crossing.

int median

int multiply

int qsort

towers

int vvadd

dijkstra

Stringsearch

rsort
Dhrystone

Bitcount

float median

float multiply

float qsort

float vvadd

basicmath

FFT
SPMV

MM

Benchmarks

0

10000

20000

30000

40000

50000

60000

70000

80000

E
n
e
rg
y 
E
ff
ic
ie
n
cy
 (
o
p
s/
u
J) CDC Async

(b) Energy efficiency (#dynamic instructions/Energy) of synchronous
design with three clock domains and desynchronized pipeline.

Fig. 14: Performance and energy efficiency comparison of
desynchronized design over Clock Domain Crossing where
regions A, B and C in Figure 6 are put in different clock
domains and are connected using synchronizers.

proposed approach. From Figure 13, it can be seen that our
proposed approach is able to outperform telescopic units in
all the cases. The reason behind this is quite simple – since
telescopic units runs the design at a high frequency and uses
two cycles instead of one for slow operations, it can increase
the time taken for a slow operation and if the application is
full of operations that require the slow clock, it can cause a
negative impact on the performance. Telescopic units is known
to improve overall throughput only when the long latency
paths have low occurrence probability [11] which is not true
for these benchmarks. The proposed approach, on the other
hand uses the exact amount of delay that would be required for



10

any operation and hence does not over or under estimate the
delay requirements. To compare our design against varipipe
[12], we realize that varipipe has the potential to achieve
the same performance as our proposed design. However, it
uses a centralized clock generator, and delay lines from all
units have to be combined centrally, whereas our scheme is
distributed and only requires the interaction between delay
lines of communicating blocks. Further, a centralized clock
generator also doesn’t solve the issues of spatial-temporal
variations and EMI in the clock and lacks the key benefits of
desynchronization as shown in [1]. To compare our proposed
methodology with Multiple clock domains or Clock Domain
Crossing (CDC), we realize that CDC assigns different clocks
to different regions of the circuit and use synchronizers to
communicate signals between different clock domains. CDC
is good for the designs where the communication between
different clock domains is less. However, for the processor
design like RISC-V core, keeping FPU and main core in
different clock domains is not beneficial as the FPU can be
frequently used by many benchmarks and adding synchro-
nizer increases latency of FPU which in turn decreases the
throughput. For example, if an instruction is dependent on
a floating point instruction whose latency increases due to
the overhead of synchronizers, the performance of the system
will suffer. However, for an approach like ours there is no
overhead of synchronizers. Further, CDC requires intrusive
design changes, for example if there is some combinational
logic on the path from one register in one clock domain to
another register in another clock domain, a register has to be
placed after the combinational logic to avoid the probability
of failure due to glitches [25]. Due to the potential problems
of metastability, the integration of different clock domains is
considered much more difficult compared to the integration of
various asynchronous modules [24]. Figure 14a and 14b show
the performance improvement of the desynchronized RISC-
V core over the design with multiple clock domains. The
design with multiple clock domains consists of three clock
domains for each of the regions A, B, and C in Figure 6. A
two cycle synchronizer delay is modeled between any two
clock domains. As we can see the desynchronized design
outperforms design with multiple clock domains and also
has a better energy efficiency. Dynamic time borrowing is
another technique where registers are split into latches and
these latches are moved around to balance the combinational
path delay in each stage, so that the circuit achieves the
average case performance instead of worst case performance.
However, dynamic time borrowing adds a lot many timing
constraints which sometimes makes the synthesis process more
difficult [26], while our proposed approach does not add to
the complexity of the synthesis process. In dynamic time
borrowing, for any latch in the system the data must arrive
in time to be properly captured and as time for data arrival is
a function of all the previous pipeline stages, a worst case data
arrival analysis is done which requires calculating the timing
of all the stages that share a path. The complexity grows for
the circuits that have loops [26]. To compare our proposed
approach against [4], we realize that this work focuses on
desynchronizing a synchronous circuit with negligible area

overhead and potential power consumption reduction. How-
ever, it achieves the same performance as the synchronous
counterpart. This work is orthogonal to our work since it does
not focus of dynamically skipping the critical paths which are
not active, however, the technique in [4] combined with our
technique can provide potential savings in power and high-
performance at the same time. TonyChopper [27] provided a
desynchronization package that uses the standard cell libraries
and reduces the leakage power. However, it results into a
desynchronized circuit which could be 2.4× slower than
synchronous baseline and can have an area overhead as large
as 2.4× which is very high as compared to 0.3% area overhead
in our proposed approach.

Although we have shown the application of the proposed
desynchronization technique in the context of microproces-
sors, it can also be applied to complex synchronous circuits
especially those generated through high-level synthesis (HLS).
HLS takes source program in languages like C, C++, OpenCL
etc and generates hardware circuits in the form of HDLs
for both FPGAs and ASICs. This high-level specification
many times consists of if-else branches and HLS generates
circuit for both true and false branches. The circuit for
these branches becomes active based on the dynamic branch
condition. If both the branches have different critical paths,
one can think of using the branch condition to determine
the active state of the two branches and put the branches
in different desynchronization regions. For circuits designed
with Register-Transfer Level (RTL), if certain hardware block
is conditionally used, then the designer can provide a signal
indicating the active state of the block and the proposed
technique can be used for dynamically scaling the frequency
to achieve better performance.

V. CONCLUSION

In this paper, we discussed the reasons that restrict tra-
ditional desynchronization techniques from improving the
performance of synchronous designs. We proposed a novel
operation-dependent desynchronization technique, which uses
the information about active modules in a synchronous design
and dynamically scales frequency to achieve a higher through-
put. As achieving a higher frequency for every part of the
design is essential to improve overall throughput, the proposed
technique provides a way to combine various designs built
under different constraints without sacrificing performance.

ACKNOWLEDGMENT

This research was supported in part by NSF Awards
#1065307.

REFERENCES

[1] J. Cortadella, A. Kondratyev, L. Lavagno, and C. P. Sotiriou, “Desyn-
chronization: Synthesis of asynchronous circuits from synchronous
specifications,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 25, no. 10, pp. 1904–1921, 2006.

[2] N. Andrikos, L. Lavagno, D. Pandini, and C. P. Sotiriou, “A fully-
automated desynchronization flow for synchronous circuits,” in Design
Automation Conference, 2007. DAC’07. 44th ACM/IEEE. IEEE, 2007,
pp. 982–985.



11

[3] D. H. Linder and J. Harden, “Phased logic: Supporting the synchronous
design paradigm with delay-insensitive circuitry,” IEEE Transactions on
Computers, vol. 45, no. 9, pp. 1031–1044, 1996.

[4] F. Bertrand, A. Cherkaoui, J. Simatic, A. Maure, and L. Fesquet, “Car:
On the highway towards de-synchronization,” in Electronics, Circuits
and Systems (ICECS), 2017 24th IEEE International Conference on.
IEEE, 2017, pp. 339–343.

[5] A. Smirnov, A. Taubin, and M. Karpovsky, “Automated pipelining in
asic synthesis methodology: Gate transfer level,” in IWLS 2004 thirteenth
international workshop on logic and synthesis. Citeseer, 2004.

[6] P. A. Beerel, G. D. Dimou, and A. M. Lines, “Proteus: An asic flow for
ghz asynchronous designs,” IEEE Design and test of Computers, vol. 28,
no. 5, pp. 36–51, 2011.

[7] R. Manohar, “Systems and methods for performing automated conver-
sion of representations of synchronous circuit designs to and from repre-
sentations of asynchronous circuit designs,” 2009, uS Patent 7,610,567.

[8] F. Akopyan, C. Otero, and R. Manohar, “Hybrid synchronous-
asynchronous tool flow for emerging vlsi design.” IEEE, 2016.

[9] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi,
S. Dwarkadas, and M. L. Scott, “Energy-efficient processor design using
multiple clock domains with dynamic voltage and frequency scaling.”
High-Performance Computer Architecture, pp. 29–40, 2002.

[10] F. Mendes, T. Curtinhas, D. L. Oliveira, H. A. Delsoto, and L. A.
Faria, “A novel tool for synthesis by direct mapping of asynchronous
circuits from extended stg specifications,” in VLSI Design and 2018
17th International Conference on Embedded Systems (VLSID), 2018 31st
International Conference on. IEEE, 2018, pp. 451–452.

[11] L. Benini, E. Macii, M. Poncino, and G. De Micheli, “Telescopic units:
A new paradigm for performance optimization of vlsi designs,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 17, no. 3, pp. 220–232, 1998.

[12] N. Toosizadeh, S. G. Zaky, and J. Zhu, “Varipipe: low-overhead variable-
clock synchronous pipelines,” in Computer Design, 2009. ICCD 2009.
IEEE International Conference on. IEEE, 2009, pp. 117–124.

[13] J. Xu and H. Wang, “Desynchronize a legacy floating-point adder with
operand-dependant delay elements,” in Circuits and Systems (ISCAS),
2011 IEEE International Symposium on. IEEE, 2011, pp. 1427–1430.

[14] M. Singh and S. M. Nowick, “Mousetrap: High-speed transition-
signaling asynchronous pipelines,” IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, vol. 15, no. 6, pp. 684–698, 2007.

[15] A. Saifhashemi, D. Hand, P. A. Beerel, W. Koven, and H. Wang,
“Performance and area optimization of a bundled-data intel processor
through resynthesis,” in Asynchronous Circuits and Systems (ASYNC),
2014 20th IEEE International Symposium on. IEEE, 2014, pp. 110–
111.

[16] A. Davare, K. Lwin, A. Kondratyev, and A. Sangiovanni-Vincentelli,
“The best of both worlds: The efficient asynchronous implementation of
synchronous specifications,” in Proceedings of the 41st annual Design
Automation Conference. ACM, 2004, pp. 588–591.

[17] A. J. Martin, “Synthesis of asynchronous vlsi circuits,” CALIFORNIA
INST OF TECH PASADENA DEPT OF COMPUTER SCIENCE, Tech.
Rep., 2000.

[18] S. M. Burns, “Performance analysis and optimization of asynchronous
circuits,” 1991.

[19] A. Moreno and J. Cortadella, “Synthesis of all-digital delay lines,”
in Asynchronous Circuits and Systems (ASYNC), 2017 23rd IEEE
International Symposium on. IEEE, 2017, pp. 75–82.

[20] Y. Chen, R. Manohar, and Y. Tsividis, “Design of tunable digital delay
cells,” in Custom Integrated Circuits Conference (CICC), 2017 IEEE.
IEEE, 2017, pp. 1–4.

[21] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The
rocket chip generator,” EECS Department, U. C. Berkeley, Tech. Rep.
UCB/EECS-2016-17, 2016.

[22] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop on. IEEE, 2001, pp. 3–14.

[23] “TI-DVFS,” http://www.ti.com/lit/an/slva646/slva646.pdf.
[24] M. Krstic, E. Grass, and X. Fan, “Asynchronous and gals design-

overview and perspectives,” in CAS (NGCAS), 2017 New Generation
of. IEEE, 2017, pp. 85–88.

[25] S. Churiwala and S. Garg, Clock Domain Crossing (CDC). New York,
NY: Springer New York, 2011, pp. 73–89.

[26] V. G. Oklobdzija, V. M. Stojanovic, D. M. Markovic, and N. M. Nedovic,
Digital System Clocking: High-Performance and Low-Power Aspects.
Piscataway, NJ, USA: IEEE Press, 2003.

[27] Z. Wang, X. He, and C. M. Sechen, “Tonychopper: A desynchronization
package,” in Proceedings of the 2014 IEEE/ACM International Confer-
ence on Computer-Aided Design. IEEE Press, 2014, pp. 446–453.

Nitish Srivastava Nitish Srivastava (S’18) received
the B.Tech degree from Indian Institute of Technol-
ogy, Kanpur, India in the department of Electrical
Engineering in 2014. Since 2014, he is a PhD stu-
dent in the Department of Electrical and Computer
Engineering at Cornell University.

His current research interests are spatial hardware
for high performance computing, FPGAs and circuit
design.

Rajit Manohar Rajit Manohar (M’98-SM’10) is the
John C. Malone Professor of Electrical Engineering
and Professor of Computer Science at Yale. He
received his B.S. (1994), M.S. (1995), and Ph.D.
(1998) from Caltech. He was on the Cornell fac-
ulty from 1998 to 2016, where he was a Stephen
H. Weiss Presidential Fellow. He has been on the
Yale faculty since 2017, where his group conducts
research on the design, analysis, and implementation
of self-timed systems. He founded the Computer
Systems Lab at both Cornell and Yale. He is the

recipient of an NSF CAREER award, nine best paper awards, nine teaching
awards, and was named to MIT technology review’s top 35 young innovators
under 35 for contributions to low power microprocessor design. His work
includes the design and implementation of a number of self-timed VLSI chips
including the first high-performance asynchronous microprocessor, the first
microprocessor for sensor networks, the first asynchronous dataflow FPGA,
the first radiation hardened SRAM-based FPGA, and the first deterministic
large-scale neuromorphic architecture.


